Problems Solved:

26	27	28	29	30

Name:

Matrikel-Nr.:

Problem 26. Consider the following term rewriting system:

$$
\begin{align*}
& p(x, s(y)) \rightarrow p(s(x), y) \tag{1}\\
& p(x, 0) \rightarrow x \tag{2}
\end{align*}
$$

1. Show that

$$
p(s(0), s(0)) \xrightarrow{*} s(s(0))
$$

by a suitable reduction sequence. For each reduction step, underline the subterm that you reduce, and indicate the reduction rule and the matching substitution σ used explicitly.
2. Disprove that

$$
p(p(s(0), s(0)), p(s(0), s(0))) \xrightarrow{*} s(s(0)) .
$$

Problem 27. Configurations of Turing machines can be encoded as a terms in various ways; for instance we can encode the configuration

as the term

$$
g\left(q, z, f\left(x_{1}, f\left(x_{2} \cdots f\left(x_{m}, e\right)\right)\right), f\left(y_{1}, f\left(y_{2} \cdots f\left(y_{m}, e\right)\right)\right)\right)
$$

In the picture, q is the state of the head and the symbols $x_{m}, \ldots, x_{1} ; z ; y_{1}, \ldots, y_{n} \in$ Γ describes the tape to the left / under / to the right of the head.
Show how to translate the transition function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ to a set of term rewrite rules.

1. Give a rewrite rule for each $q \in Q$ and each $c \in \Gamma$ with $\delta(q, c)=\left(q^{\prime}, c^{\prime}, L\right)$
2. Give a rewrite rule for each $q \in Q$ and each $c \in \Gamma$ with $\delta(q, c)=\left(q^{\prime}, c^{\prime}, R\right)$

Hint: It helps to draw pictures of the machine configuration before and after a transition and to translate both configurations to terms.

Problem 28. Define the following languages by context free grammars over the alphabet $\Sigma=\{0,1\}$.
(a) $L_{1}=\{w \mid w$ contains at least two zeroes. $\}$
(b) $L_{2}=\{w \mid w$ starts and ends with one and the same symbol. $\}$
(c) $L_{3}=\{w \mid w$ consists of an odd number of symbols and the symbol in the center of w is a 0.$\}$
(d) $L_{4}=L_{2} \cap L_{3}$

Problem 29. Consider the grammar $G=(N, \Sigma, P, S)$ where $N=\{S\}, \Sigma=$ $\{a, b\}, P=\{S \rightarrow \epsilon, S \rightarrow a S b S\}$.
(a) Is $a a b a b b \in L(G)$?
(b) Is $a a b a b \in L(G)$?
(c) Does every element of $L(G)$ contain the same number of occurrences of a and b ?
(d) Is $L(G)$ regular?
(e) Is $L(G)$ recursive?

Justify your answers.
Problem 30. Construct a FSM recognizing $L(G)$ where G is the grammar:

$$
\begin{aligned}
& S \rightarrow a S|b A| b \\
& A \rightarrow a A|b S| a
\end{aligned}
$$

