Problems Solved:

16	17	18	19	20

Name:

Matrikel-Nr.:

Problem 16.

Definition 1 (RAM computable). We say that a partial function $f: \mathbb{N} \rightarrow_{P} \mathbb{N}$ is $R A M$ computable if there exists a RAM R that such that

- R terminates for input $n \in \mathbb{N}$ if and only if $n \in \operatorname{domain}(f)$;
- R terminates for input $n \in \mathbb{N}$ with output n^{\prime} if and only if $n^{\prime}=f(n)$.

Show that every loop computable function is also RAM computable by describing how the loop program computing the function can be translated to a RAM program.
Problem 17. Give reasons for your answers.

1. Let R be a RAM that reads exactly one number from its input tape and always terminates with 0 or 1 written on its output tape. Is there a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(x)=y$ if and only if the input was x and after termination y is on the output tape of R ?
2. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function. Is there always a RAM R such that R terminates on every input and that R with input $z \in \mathbb{Z}$ has written $f(z)$ to its output tape?

Problem 18. Provide a loop program that computes the function $f(n)=$ $\sum_{k=1}^{n} k(k+1)$, and thus show that f is loop computable.
Problem 19. Write down explicit loop programs for s and d.

1. Show by using only the Definition of a loop program (Def. 23 in the lecture notes, Section 3.2.2) that the function

$$
s\left(x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } x_{1}<x_{2} \\ 0 & \text { otherwise }\end{cases}
$$

is loop computable. I.e. give an explicit loop program for s.
Note that it is not allowed to use an abbreviation like
$\mathrm{x}_{\mathrm{i}}:=\mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{k}} ;$
2. Write a loop program that computes the function $d: \mathbb{N} \rightarrow \mathbb{N}$ where $d\left(x_{1}, x_{2}\right)$ is $k \in \mathbb{N}$ such that $k \cdot\left(x_{2}+1\right)=x_{1}+1$ if such a k exists. The result is $d\left(x_{1}, x_{2}\right)=0$, if a k with the above property does not exist.
For simplicity in the program for d, you are allowed to use a construction like the following (with the obvious semantics) where P is an arbitrary loop program.

```
IF }\mp@subsup{\textrm{x}}{\textrm{i}}{}<\mp@subsup{\textrm{x}}{\textrm{j}}{}\mathrm{ THEN P END;
```

Problem 20. Suppose P is a while-program that does not contain any WHILE statements, but might modify the values of the variables x_{1} and x_{2}.
Transform the following program into Kleene's normal form.
Hint: first translate the program into a goto program, replace the GOTOs by assignments to a control variable, and add the WHILE wrapper.
$\mathrm{x}_{0} \quad:=0$
WHILE x_{1} DO
$\mathrm{x}_{1}:=\mathrm{x}_{1}-1$;
$\mathrm{x}_{2}:=\mathrm{x}_{1}$;
WHILE x_{2} DO
P;
END;
END;
$\mathrm{x}_{0}:=\mathrm{x}_{0}+1$

