Problems Solved:

11	12	13	14	15

Name:

Matrikel-Nr.:

Problem 11. Let M_{1} be the DFSM with states $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ whose transition graph is given below. Determine a regular expression r such that $L(r)=L\left(M_{1}\right)$. Show the derivation of the the final result by the technique based on Arden's Lemma (see lecture notes).

Problem 12. Let r be the following regular expression.

$$
a \cdot a \cdot(b \cdot a)^{*} \cdot b \cdot b^{*}
$$

Construct a nondeterministic finite state machine N such that $L(N)=L(r)$. Show the derivation of the result by following the technique presented in the proof of the theorem Equivalence of Regular Expressions and Automata (see lecture notes).

Problem 13. Let L be the language of properly nested strings over the alphabet $\Sigma=\{[], o$,$\} . A word w$ is properly nested if it contains as many opening as closing brackets and every prefix of w contains at least as many opening brackets [as closing]. (Example: oo [] [o [o]] is properly nested, but oo] [is not.) Show by means of the Pumping Lemma that L is not regular.

Problem 14. Write down explicitly a Turing machine M over $\Sigma=\{0\}$ which computes the function $d: \mathbb{N} \rightarrow \mathbb{N}$ given by $d(n)=2 n$.
Use unary representation: A number n is represented by the string 0^{n} consisting of n copies of the symbol 0 .

Problem 15. Write down explicitly an enumerator G such that $\operatorname{Gen}(G)=$ $\left\{0^{2 n} \mid n \in \mathbb{N}\right\}$.
Since in the lecture notes it has not been formally defined, how a Turing machine with two tapes works, you may describe the transition function as

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{R, L\} \times(\Gamma \cup\{\boxtimes\})
$$

in the following way: If G is in state q and reads the symbol c from the working tape, and

$$
\delta(q, c)=\left(q^{\prime}, c^{\prime}, d, c^{\prime \prime}\right)
$$

then G goes to state q^{\prime}, replaces c by c^{\prime} on the working tape and moves the working tape head in direction d. Moreover, unless $c^{\prime \prime}=\boxtimes$, the symbol $c^{\prime \prime}$ is
written on the output tape and the output tape head is moved one position forward. If, however, $c^{\prime \prime}=\boxtimes$, nothing is written on the output tape and the output tape head rests in place.
Hint: There exists a solution with only 4 states.

