A Variant of Higher-Order Anti-Unification

Alexander Baumgartner
Temur Kutsia
Jordi Levy
Mateu Villaret

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Anti-Unification Problem

Given two terms ty, t.
Find a generalization term t such that t, t> are instances of t.

Interesting generalizations are the least general ones (Iggs).

Input terms ‘ f(a,g(b), b) and f(a, g(c),c)
Generalization | f(a,x,y)
Leg f(a,g(x),x)

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Goal / Setting

The Setting:

Input: Simply-typed lambda terms ty, t,.
Output: Simply-typed higher-order pattern generalization of ty, t>.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Goal / Setting

The Setting:

Input: Simply-typed lambda terms ty, t,.

Output: Simply-typed higher-order pattern generalization of ty, t>.
Provide an anti-unification algorithm to compute Iggs:

Design algorithm,
Prove correctness,
Complexity analysis,
Implementation.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Simply Typed Lambda Calculus

Basic types: 91,02, ...
Type constructor: —
Types: T =0 |7 — 7T
Variables: X, Y,x,y,...
Constants: ¢, f,g,...

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Simply Typed Lambda Calculus

A-terms (t,s,...) are built using the grammar:
ti=x|c|Axt|t1 b

Terms are assumed to be written in n-long $-normal form:
t=Ax1,...,xp.h(t1,..., tm) were h(ty,...,ty,) has a basic type
and h is a constant or variable.

The head of t is defined as Head(t) = h.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Substitution and Generalization

Definition (Substitution o)
Finite set of pairs {X1 — t1,..., X, — t,} where X; and t; have
the same type and the X's are pairwise distinct variables.

to for substitution application.

t < s if there exists o such that to = s.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Substitution and Generalization

Definition (Substitution o)
Finite set of pairs {X1 — t1,..., X, — t,} where X; and t; have
the same type and the X's are pairwise distinct variables.

to for substitution application.

t < s if there exists o such that to = s.

Definition (Generalization and least general generalization)

A term t is a generalization of t; and tp, if t < t; and t < t,.
It is a Igg, if there is no generalization s which satisfies t < s.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Higher-Order Patterns

In general, there is no unique higher-order Igg.
Input terms: f(g(a, b), c) and f(c, h(a))
Higher-order lggs: (X, Y), X(c, Y(a)) and X(Y(a),c)
Consider special classes to guarantee uniqueness.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Higher-Order Patterns

In general, there is no unique higher-order Igg.
Input terms: f(g(a, b), c) and f(c, h(a))
Higher-order lggs: (X, Y), X(c, Y(a)) and X(Y(a),c)
Consider special classes to guarantee uniqueness.
Definition (Higher-order pattern)
Arguments of free variables are distinct bound variables.
Mx.f(X(x),Y), f(c, \x.x) and Ax.\y.X(\z.x(z),y) are patterns.
Ax.f(X(X(x)),Y), f(X(c),c) and Ax.\y.X(x,x) are not patterns.

Input terms: f(g(a, b), c) and f(c, h(a))
Pattern-lgg: (X, Y)

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Input / Output

Input: Higher-order terms t; and tp in n-long S-normal form.

Output: Unique higher-order pattern generalization of t; and t.

Input terms

x,y-f(g(x,x,y),8(x,y.¥))
x, y-f(h(x, x,y), h(x,y,y))
Pattern-lgg)\x ,y-F(Yi(x,y), Ya(x,y))
No pattern | Ax,y.f(Z(x,x,y),Z(x,y,y))

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Anti-Unification Problem (AUP)

Definition (Anti-unification problem)

An anti-unification problem is a triple X(X) : t £ s where
AX.X(X), AX.t, and AX.s are terms of the same type,
t and s are in n-long S-normal form,

X does not occur in t and s.

Example: X(x,y): f(x,x,y) £ g(x,x,y)

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Rule Based System ‘B3

P operates on a triple A; S; o.
Ais a set of AUPs like {Xi(x1) i t1 2 s1,..., Xa(X3) : tn 2 s}
S is a set of already solved AUPs (the store).
o is a substitution which maps variables to patterns.

Each generalization variable X; occurs only once in AU S.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Compute Pattern Generalization

Initialize A; S; o with {X : t £ s}; 0; € where X is fresh variable.
Apply the rules of 3 successively as long as possible.

Final system has the form (); S; o.

Result Xo is a pattern-lgg.

Computed pattern-lgg is unique modulo a-equivalence.

S contains all the differences between t and s.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

The Rules of 3

Y's always denote fresh variables of the corresponding types.

Dec: Decomposition
{X(X): h(t, ... tm) 2 h(s1,...,5m)}UA; S; 0 =
{Yl(?) 5 £ Slyevny m(?) Ctm £ Sm} UA; S;
a{X = AX.h(Yi(X),..., Yu(X))},
where h is a constant or h € X.
Abs: Abstraction
{X(R): Ayt 2 Azs}UA; S; 0 =
{Y(R,y):t2s{z— y}JUA; S, o{X = AX,y.Y(X,¥)}.
Sol: Solve
{X(R):t£sIUA; S; 0= A; {Y(¥): t=2s}US; o{X = AX.Y(V)},
where t and s are of basic type. Head(t) # Head(s) or Head(t) = Z ¢ X.
Y is a subsequence of X consisting of the variables that appear freely in t or s.
Rec: Recover
AXR): 126,2(2):s125}US; 0=
A {X(X): 1 2 }IUS; o{Z = \Z.X(Xm)},
where 7 : {X} — {Z} is a bijection, extended as a substitution, such that
tim = s1 and b = 5.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Demonstration of 13

Let t = Ax,y.f(x,y) and s = Ax, y.f(y, x).
{X X, y.f(x,y) 2 X, y.f(y,x)}; 0; ¢
=a0s {Y1(x) 1 Ay f(x,) 2 Ay Fy,x)}; 0 {X = Ax.Yi(x)}
=abs {Y2(x,¥) 1 F(x,¥) 2 fy, x) 1 0 {X = Ax,y.Ya(x, y)}
= pec {Ya(x,¥) 1 x £y, Ya(x,y) 1y £ x};0;
{X = A,y f(Ya(x,), Ya(x, ¥))}
=so {Ya(x,y) 1y Ex3{Ys(x,y) : x 2y}
{X = Ax, y.£(Ya(x, y), Ya(x,)}
=sa 0 {Y3(x,y) i x £y, Ya(x,y) 1y & x};
{X = Ax, y.£(Ya(x, y), Ya(x, ¥))}
=rrec 0; {Y3(x,y) : x £y}
{X = M, y.f(Ya(x,y), Ya(y, x)), Ya = Ax, y.Y3(y, x)}.
The computed result r = Xo is Ax, y.f(Y3(x,y), Y3(y, x)).
It generalizes t = r{Y3 — Ax,y.x} and s = r{Y3 — Ax,y.y}.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Matching Problem

Rec: Recover
A, {X(_)) Tt £ tz,Z(_b) 51 = = 52}US o —
A {X(X):t1 2 }US; 0{Z — A\Z.X(X7)},
where 7 : {X} — {Z} is a bijection, extended as a substitution,
such that tym = s; and b = sp.

Matching problem P, whose solution bijectively maps variables
from a finite set D to a finite set R.

The permuting matcher 7 is unique, if it exists.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Computing Permuted Matchers

O computes a permuting matcher 7, if it exists.

<Mt works on quintuples of the form D; R; P; p; m where
D is a set of domain variables,
R is a set of range variables,
P is a set of matching problems of the form {s; = t1,...,Sn = tm},
p is a substitution which keeps track of bound variable renamings,
7 is a substitution which keeps track of the permutations.

9N has two final states:

The failure state L.
The success state D; R; (; p; .

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Computing Permuted Matchers

Create a variable renaming substitution v to rename all the
variables in D with fresh ones (domain/range separation).

Take Dv; R; {siv=t1, v =t }; €; € as the input of the
algorithm and apply the rules exhaustively.

If no rule applies to a system with P # (), then this system is
transformed into L.

If 991 reaches the success state, then construct and return the
permuting matcher (v7)|p.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

The rules of M

Dec-M: Decomposition
D; R; {m(t1,.. . tm)=ha(s1,....5m)}UP; p; m =
D; R, {ti=s1,...,tm=sm} UP; p; ,
where each of h; and hy is either a constant or a variable.
h17’l’ = h2,0 and h1 ¢ D, or h17T' = hgp and hz ¢ R.
Abs-M: Abstraction
D; R, {Mx.t=Ay.s}UP; p; m= D; R; {t=s}UP; ply — x}; 7.
Per-M: Permutation
{x}UD; {y}UR; {x(t1,....tm)=y(s1,...,Sm)}UP; p; m =
D; R, {tizs1,...,tm=sm} UP; p; m{x— y},
where x and y have the same type.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Demonstration of 9t

Compute the permuting matcher of {X{}y,z) =x(z,y),
X(y, A\u.u)=X(z,Av.v)} from {x,y,z} to {x,y, z}.

Xy, 2V x,y, 25 X (Y, 2)= x(2, y), X(Y, Auw.u) = X(z, Av.v) g e
—>Per-M {y'7 z/}; {y,z}; {y’ =z,7 =y, X(y/7 Av.u)=X(z, Avv) e {X/ — x}
=peem {21y} {Z =y, XY Auu) = X(z, v} 6 {X = x, ¥+ 2}
=perm 0; 0; {X (Y, Au.t) = X(z, vv)}e{x = x, ¥ = 2,72 = y}
=pecm 0; 0; {y' =z, \wu= dvvie {X = x,y = 2,2 = y}
=peem 0 0; {Avu=Avivle {xX = x, ¥y = 2,2 — y}
= apsm 00 {v=uli {u— v {X = x,y = 2,2 =y}
=peem 0; 0;0; {v i v} {X = x,y = 2,2 — y}.

As result we obtain a substitution {x — x,y +— z,z — y}.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Final remarks

Proofs:

Soundness, completeness, and termination of 9.
Soundness, completeness, and termination of 3.
Computed result is a pattern-lgg and unique modulo a-equivalence.

Complexity analysis:
N has linear time and space complexity.
B has cubic time and linear space complexity.

Implementation:
http://www.risc.jku.at/projects/stout/software /hoau.php

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

