A Variant of Higher-Order Anti-Unification

Alexander Baumgartner Temur Kutsia Jordi Levy Mateu Villaret • Given two terms t_1, t_2 .

-

- Find a generalization term t such that t_1, t_2 are instances of t.
- Interesting generalizations are the least general ones (lggs).

Input terms	f(a,g(b),b) and $f(a,g(c),c)$
Generalization	f(a, x, y)
Lgg	f(a,g(x),x)

- The Setting:
 - Input: Simply-typed lambda terms t_1, t_2 .
 - Output: Simply-typed higher-order pattern generalization of t_1, t_2 .

- The Setting:
 - Input: Simply-typed lambda terms t_1, t_2 .
 - Output: Simply-typed higher-order pattern generalization of t_1, t_2 .
- Provide an anti-unification algorithm to compute lggs:
 - Design algorithm,
 - Prove correctness,
 - Complexity analysis,
 - Implementation.

- Basic types: $\delta_1, \delta_2, \ldots$
- Type constructor: \rightarrow
- Types: $\tau ::= \delta \mid \tau \to \tau$
- Variables: X, Y, x, y, \ldots
- Constants: c, f, g, \ldots

> λ -terms (t, s, \ldots) are built using the grammar:

 $t ::= x \mid c \mid \lambda x.t \mid t_1 \ t_2$

- Terms are assumed to be written in η-long β-normal form: t = λx₁,..., x_n.h(t₁,..., t_m) were h(t₁,..., t_m) has a basic type and h is a constant or variable.
- The head of t is defined as Head(t) = h.

Definition (Substitution σ)

Finite set of pairs $\{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$ where X_i and t_i have the same type and the X's are pairwise distinct variables.

- $t\sigma$ for substitution application.
 - t $\leq s$ if there exists σ such that $t\sigma = s$.

Definition (Substitution σ)

Finite set of pairs $\{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$ where X_i and t_i have the same type and the X's are pairwise distinct variables.

- $t\sigma$ for substitution application.
 - $t \leq s$ if there exists σ such that $t\sigma = s$.

Definition (Generalization and least general generalization) A term t is a generalization of t_1 and t_2 , if $t \leq t_1$ and $t \leq t_2$. It is a lgg, if there is no generalization s which satisfies t < s.

Higher-Order Patterns

In general, there is no unique higher-order lgg.

Input terms: f(g(a, b), c) and f(c, h(a))Higher-order lggs: f(X, Y), X(c, Y(a)) and X(Y(a), c)

Consider special classes to guarantee uniqueness.

Higher-Order Patterns

In general, there is no unique higher-order lgg.

Input terms: f(g(a, b), c) and f(c, h(a))Higher-order lggs: f(X, Y), X(c, Y(a)) and X(Y(a), c)

Consider special classes to guarantee uniqueness.

Definition (Higher-order pattern)

Arguments of free variables are distinct bound variables.

- ► $\lambda x.f(X(x), Y)$, $f(c, \lambda x.x)$ and $\lambda x.\lambda y.X(\lambda z.x(z), y)$ are patterns.
- ▶ $\lambda x.f(X(X(x)), Y)$, f(X(c), c) and $\lambda x.\lambda y.X(x, x)$ are not patterns.

Input terms: f(g(a, b), c) and f(c, h(a))Pattern-lgg: f(X, Y)

- ▶ Input: Higher-order terms t_1 and t_2 in η -long β -normal form.
- Output: Unique higher-order pattern generalization of t_1 and t_2 .

Input terms	$\lambda x, y.f(g(x, x, y), g(x, y, y)) \lambda x, y.f(h(x, x, y), h(x, y, y))$
Pattern-lgg No pattern	$\lambda x, y.f(Y_1(x, y), Y_2(x, y)) \lambda x, y.f(Z(x, x, y), Z(x, y, y))$

Definition (Anti-unification problem)

An anti-unification problem is a triple $X(\vec{x})$: $t \triangleq s$ where

- ▶ $\lambda \vec{x} . X(\vec{x})$, $\lambda \vec{x} . t$, and $\lambda \vec{x} . s$ are terms of the same type,
- t and s are in η-long β-normal form,
- X does not occur in t and s.

Example:
$$X(x, y) : f(x, x, y) \triangleq g(x, x, y)$$

- \mathfrak{P} operates on a triple *A*; *S*; σ .
 - A is a set of AUPs like $\{X_1(\vec{x_1}) : t_1 \triangleq s_1, \dots, X_n(\vec{x_n}) : t_n \triangleq s_n\}$.
 - S is a set of already solved AUPs (the store).
 - > σ is a substitution which maps variables to patterns.
- Each generalization variable X_i occurs only once in $A \cup S$.

- ▶ Initialize *A*; *S*; σ with {*X* : $t \triangleq s$ }; \emptyset ; ε where *X* is fresh variable.
- \blacktriangleright Apply the rules of $\mathfrak P$ successively as long as possible.
- Final system has the form \emptyset ; S; σ .
- Result $X\sigma$ is a pattern-lgg.
- Computed pattern-lgg is unique modulo α -equivalence.
- S contains all the differences between t and s.

The Rules of \mathfrak{P}

> Y's always denote fresh variables of the corresponding types.

Dec: Decomposition

- $\{X(\vec{x}): h(t_1, \dots, t_m) \triangleq h(s_1, \dots, s_m)\} \cup A; S; \sigma \Longrightarrow \{Y_1(\vec{x}): t_1 \triangleq s_1, \dots, Y_m(\vec{x}): t_m \triangleq s_m\} \cup A; S; \sigma\{X \mapsto \lambda \vec{x}.h(Y_1(\vec{x}), \dots, Y_m(\vec{x}))\},\$ where h is a constant or $h \in \vec{x}$.
- ► Abs: Abstraction $\{X(\vec{x}) : \lambda y.t \triangleq \lambda z.s\} \cup A; S; \sigma \Longrightarrow$ $\{Y(\vec{x}, y) : t \triangleq s\{z \mapsto y\}\} \cup A; S; \sigma\{X \mapsto \lambda \vec{x}, y.Y(\vec{x}, y)\}.$

Sol: Solve

 $\{X(\vec{x}) : t \triangleq s\} \cup A; S; \sigma \Longrightarrow A; \{Y(\vec{y}) : t \triangleq s\} \cup S; \sigma\{X \mapsto \lambda \vec{x}. Y(\vec{y})\},\$ where *t* and *s* are of basic type. Head(*t*) \neq Head(*s*) or Head(*t*) = $Z \notin \vec{x}$. \vec{y} is a subsequence of \vec{x} consisting of the variables that appear freely in *t* or *s*.

Rec: Recover

$$\begin{array}{l} \mathsf{A}; \ \{X(\vec{x}): t_1 \triangleq t_2, Z(\vec{z}): s_1 \triangleq s_2\} \cup \mathsf{S}; \ \sigma \Longrightarrow \\ \mathsf{A}; \ \{X(\vec{x}): t_1 \triangleq t_2\} \cup \mathsf{S}; \ \sigma\{Z \mapsto \lambda \vec{z}. X(\vec{x}\pi)\}, \end{array}$$

where $\pi : \{\vec{x}\} \mapsto \{\vec{z}\}$ is a bijection, extended as a substitution, such that $t_1\pi = s_1$ and $t_2\pi = s_2$.

Demonstration of $\mathfrak P$

► Let
$$t = \lambda x, y.f(x, y)$$
 and $s = \lambda x, y.f(y, x)$.

$$\{X : \lambda x, y.f(x, y) \triangleq \lambda x, y.f(y, x)\}; \emptyset; \varepsilon$$

$$\implies_{Abs} \{Y_1(x) : \lambda y.f(x, y) \triangleq \lambda y.f(y, x)\}; \emptyset; \{X \mapsto \lambda x.Y_1(x)\}$$

$$\implies_{Abs} \{Y_2(x, y) : f(x, y) \triangleq f(y, x)\}; \emptyset; \{X \mapsto \lambda x, y.Y_2(x, y)\}$$

$$\implies_{Dec} \{Y_3(x, y) : x \triangleq y, Y_4(x, y) : y \triangleq x\}; \emptyset;$$

$$\{X \mapsto \lambda x, y.f(Y_3(x, y), Y_4(x, y))\}$$

$$\implies_{Sol} \{Y_4(x, y) : y \triangleq x\}; \{Y_3(x, y) : x \triangleq y\};$$

$$\{X \mapsto \lambda x, y.f(Y_3(x, y), Y_4(x, y))\}$$

$$\implies_{Sol} \emptyset; \{Y_3(x, y) : x \triangleq y, Y_4(x, y) : y \triangleq x\};$$

$$\{X \mapsto \lambda x, y.f(Y_3(x, y), Y_4(x, y))\}$$

$$\implies_{Rec} \emptyset; \{Y_3(x, y) : x \triangleq y\};$$

$$\{X \mapsto \lambda x, y.f(Y_3(x, y), Y_3(y, x)), Y_4 \mapsto \lambda x, y.Y_3(y, x)\}.$$

• The computed result $r = X\sigma$ is $\lambda x, y.f(Y_3(x, y), Y_3(y, x))$.

▶ It generalizes $t = r{Y_3 \mapsto \lambda x, y.x}$ and $s = r{Y_3 \mapsto \lambda x, y.y}$.

Matching Problem

Rec: Recover

 $\begin{array}{l} A; \ \{X(\vec{x}): t_1 \triangleq t_2, Z(\vec{z}): s_1 \triangleq s_2\} \cup S; \ \sigma \Longrightarrow \\ A; \ \{X(\vec{x}): t_1 \triangleq t_2\} \cup S; \ \sigma\{Z \mapsto \lambda \vec{z}. X(\vec{x}\pi)\}, \\ \text{where } \pi: \{\vec{x}\} \mapsto \{\vec{z}\} \text{ is a bijection, extended as a substitution,} \\ \text{such that } t_1\pi = s_1 \text{ and } t_2\pi = s_2. \end{array}$

- Matching problem P, whose solution bijectively maps variables from a finite set D to a finite set R.
- The permuting matcher π is unique, if it exists.

- > \mathfrak{M} computes a permuting matcher π , if it exists.
- > \mathfrak{M} works on quintuples of the form *D*; *R*; *P*; ρ ; π where
 - D is a set of domain variables,
 - R is a set of range variables,
 - ▶ *P* is a set of matching problems of the form $\{s_1 \Rightarrow t_1, \ldots, s_m \Rightarrow t_m\}$,
 - \triangleright ρ is a substitution which keeps track of bound variable renamings,
 - > π is a substitution which keeps track of the permutations.
- M has two final states:
 - The failure state \perp .
 - The success state D; R; \emptyset ; ρ ; π .

- Create a variable renaming substitution ν to rename all the variables in D with fresh ones (domain/range separation).
- Take Dν; R; {s₁ν ⇒ t₁, s₂ν ⇒ t₂}; ε; ε as the input of the algorithm and apply the rules exhaustively.
- ▶ If no rule applies to a system with $P \neq \emptyset$, then this system is transformed into \perp .
- ▶ If \mathfrak{M} reaches the success state, then construct and return the permuting matcher $(\nu \pi)|_D$.

Dec-M: Decomposition

D; R; $\{h_1(t_1, \ldots, t_m) \Rightarrow h_2(s_1, \ldots, s_m)\} \cup P$; ρ ; $\pi \Longrightarrow$ D; R; $\{t_1 \Rightarrow s_1, \ldots, t_m \Rightarrow s_m\} \cup P$; ρ ; π , where each of h_1 and h_2 is either a constant or a variable. $h_1\pi = h_2\rho$ and $h_1 \notin D$, or $h_1\pi = h_2\rho$ and $h_2 \notin R$.

Abs-M: Abstraction

 $D; R; \{\lambda x.t \exists \lambda y.s\} \cup P; \rho; \pi \Longrightarrow D; R; \{t \exists s\} \cup P; \rho\{y \mapsto x\}; \pi.$

Per-M: Permutation

 $\{x\} \cup D; \ \{y\} \cup R; \ \{x(t_1, \dots, t_m) \Rightarrow y(s_1, \dots, s_m)\} \cup P; \ \rho; \ \pi \Longrightarrow$ $D; \ R; \ \{t_1 \Rightarrow s_1, \dots, t_m \Rightarrow s_m\} \cup P; \ \rho; \ \pi\{x \mapsto y\},$ where x and y have the same type.

Demonstration of ${\mathfrak M}$

► Compute the permuting matcher of
$$\{x(y, z) \Rightarrow x(z, y), X(y, \lambda u.u) \Rightarrow X(z, \lambda v.v)\}$$
 from $\{x, y, z\}$ to $\{x, y, z\}$.
 $\{x', y', z'\}; \{x, y, z\}; \{x'(y', z') \Rightarrow x(z, y), X(y', \lambda u.u) \Rightarrow X(z, \lambda v.v)\}; \varepsilon; \varepsilon$
 $\Rightarrow_{\mathsf{Per-M}} \{y', z'\}; \{y, z\}; \{y' \Rightarrow z, z' \Rightarrow y, X(y', \lambda u.u) \Rightarrow X(z, \lambda v.v)\}; \varepsilon; \{x' \mapsto x\}$
 $\Rightarrow_{\mathsf{Per-M}} \{z'\}; \{y\}; \{z' \Rightarrow y, X(y', \lambda u.u) \Rightarrow X(z, \lambda v.v)\}; \varepsilon; \{x' \mapsto x, y' \mapsto z\}$
 $\Rightarrow_{\mathsf{Per-M}} \emptyset; \emptyset; \{X(y', \lambda u.u) \Rightarrow X(z, \lambda v.v)\}; \varepsilon; \{x' \mapsto x, y' \mapsto z, z' \mapsto y\}$
 $\Rightarrow_{\mathsf{Dec-M}} \emptyset; \emptyset; \{y' \Rightarrow z, \lambda u.u \Rightarrow \lambda v.v\}; \varepsilon; \{x' \mapsto x, y' \mapsto z, z' \mapsto y\}$
 $\Rightarrow_{\mathsf{Dec-M}} \emptyset; \emptyset; \{v \Rightarrow u\}; \{u \mapsto v\}; \{x' \mapsto x, y' \mapsto z, z' \mapsto y\}$
 $\Rightarrow_{\mathsf{Dec-M}} \emptyset; \emptyset; \{v \Rightarrow u\}; \{u \mapsto v\}; \{x' \mapsto x, y' \mapsto z, z' \mapsto y\}$

• As result we obtain a substitution $\{x \mapsto x, y \mapsto z, z \mapsto y\}$.

Proofs:

- > Soundness, completeness, and termination of \mathfrak{M} .
- ► Soundness, completeness, and termination of 𝔅.
- Computed result is a pattern-lgg and unique modulo α -equivalence.
- Complexity analysis:
 - > \mathfrak{M} has linear time and space complexity.
 - $\blacktriangleright \ \mathfrak{P}$ has cubic time and linear space complexity.
- Implementation:
 - http://www.risc.jku.at/projects/stout/software/hoau.php