A Variant of Higher-Order Anti-Unification

Alexander Baumgartner
Temur Kutsia
Jordi Levy
Mateu Villaret

Anti-Unification Problem

- Given two terms t_{1}, t_{2}.
- Find a generalization term t such that t_{1}, t_{2} are instances of t.
- Interesting generalizations are the least general ones (lggs).

Input terms	$f(a, g(b), b)$ and $f(a, g(c), c)$
Generalization	$f(a, x, y)$
Lgg	$f(a, g(x), x)$

Goal / Setting

- The Setting:
- Input: Simply-typed lambda terms t_{1}, t_{2}.
- Output: Simply-typed higher-order pattern generalization of t_{1}, t_{2}.

Goal / Setting

- The Setting:
- Input: Simply-typed lambda terms t_{1}, t_{2}.
- Output: Simply-typed higher-order pattern generalization of t_{1}, t_{2}.
- Provide an anti-unification algorithm to compute Iggs:
- Design algorithm,
- Prove correctness,
- Complexity analysis,
- Implementation.

Simply Typed Lambda Calculus

- Basic types: $\delta_{1}, \delta_{2}, \ldots$
- Type constructor: \rightarrow
- Types: $\tau::=\delta \mid \tau \rightarrow \tau$
- Variables: X, Y, x, y, \ldots
- Constants: c, f, g, \ldots

Simply Typed Lambda Calculus

- λ-terms (t, s, \ldots) are built using the grammar:

$$
t::=x|c| \lambda x . t \mid t_{1} t_{2}
$$

- Terms are assumed to be written in η-long β-normal form: $t=\lambda x_{1}, \ldots, x_{n} . h\left(t_{1}, \ldots, t_{m}\right)$ were $h\left(t_{1}, \ldots, t_{m}\right)$ has a basic type and h is a constant or variable.
- The head of t is defined as $\operatorname{Head}(t)=h$.

Substitution and Generalization

Definition (Substitution σ)
Finite set of pairs $\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\}$ where X_{i} and t_{i} have the same type and the X 's are pairwise distinct variables.

- $t \sigma$ for substitution application.
- $t \preceq s$ if there exists σ such that $t \sigma=s$.

Substitution and Generalization

Definition (Substitution σ)

Finite set of pairs $\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\}$ where X_{i} and t_{i} have the same type and the X 's are pairwise distinct variables.

- $t \sigma$ for substitution application.
- $t \preceq s$ if there exists σ such that $t \sigma=s$.

Definition (Generalization and least general generalization)
A term t is a generalization of t_{1} and t_{2}, if $t \preceq t_{1}$ and $t \preceq t_{2}$. It is a lgg, if there is no generalization s which satisfies $t \prec s$.

Higher-Order Patterns

- In general, there is no unique higher-order lgg.

Input terms: $f(g(a, b), c)$ and $f(c, h(a))$
Higher-order lggs: $f(X, Y), X(c, Y(a))$ and $X(Y(a), c)$

- Consider special classes to guarantee uniqueness.

Higher-Order Patterns

- In general, there is no unique higher-order lgg.

Input terms: $f(g(a, b), c)$ and $f(c, h(a))$
Higher-order lggs: $f(X, Y), X(c, Y(a))$ and $X(Y(a), c)$

- Consider special classes to guarantee uniqueness.

Definition (Higher-order pattern)
Arguments of free variables are distinct bound variables.

- $\lambda x \cdot f(X(x), Y), f(c, \lambda x \cdot x)$ and $\lambda x \cdot \lambda y . X(\lambda z \cdot x(z), y)$ are patterns.
- $\lambda x . f(X(X(x)), Y), f(X(c), c)$ and $\lambda x . \lambda y \cdot X(x, x)$ are not patterns.

Input terms: $f(g(a, b), c)$ and $f(c, h(a))$
Pattern-lgg: $f(X, Y)$

Input / Output

- Input: Higher-order terms t_{1} and t_{2} in η-long β-normal form.
- Output: Unique higher-order pattern generalization of t_{1} and t_{2}.

Input terms	$\lambda x, y \cdot f(g(x, x, y), g(x, y, y))$ $\lambda x, y \cdot f(h(x, x, y), h(x, y, y))$
Pattern-lgg	$\lambda x, y \cdot f\left(Y_{1}(x, y), Y_{2}(x, y)\right)$
No pattern	$\lambda x, y \cdot f(Z(x, x, y), Z(x, y, y))$

Anti-Unification Problem (AUP)

Definition (Anti-unification problem)
An anti-unification problem is a triple $X(\vec{x}): t \triangleq s$ where

- $\lambda \vec{x} \cdot X(\vec{x}), \lambda \vec{x} . t$, and $\lambda \vec{x}$.s are terms of the same type,
- t and s are in η-long β-normal form,
- X does not occur in t and s.

Example: $X(x, y): f(x, x, y) \triangleq g(x, x, y)$

Rule Based System \mathfrak{P}

- \mathfrak{P} operates on a triple $A ; S ; \sigma$.
- A is a set of AUPs like $\left\{X_{1}\left(\overrightarrow{x_{1}}\right): t_{1} \triangleq s_{1}, \ldots, X_{n}\left(\overrightarrow{x_{n}}\right): t_{n} \triangleq s_{n}\right\}$.
- S is a set of already solved AUPs (the store).
- σ is a substitution which maps variables to patterns.
- Each generalization variable X_{i} occurs only once in $A \cup S$.

Compute Pattern Generalization

- Initialize $A ; S ; \sigma$ with $\{X: t \triangleq s\} ; \emptyset ; \varepsilon$ where X is fresh variable.
- Apply the rules of \mathfrak{P} successively as long as possible.
- Final system has the form $\emptyset ; S ; \sigma$.
- Result $X \sigma$ is a pattern-Igg.
- Computed pattern-lgg is unique modulo α-equivalence.
- S contains all the differences between t and s.

The Rules of \mathfrak{P}

- Y's always denote fresh variables of the corresponding types.
- Dec: Decomposition

$$
\begin{aligned}
& \left\{X(\vec{x}): h\left(t_{1}, \ldots, t_{m}\right) \triangleq h\left(s_{1}, \ldots, s_{m}\right)\right\} \cup A ; S ; \sigma \Longrightarrow \\
& \left\{Y_{1}(\vec{x}): t_{1} \triangleq s_{1}, \ldots, Y_{m}(\vec{x}): t_{m} \triangleq s_{m}\right\} \cup A ; S ; \\
& \quad \sigma\left\{X \mapsto \lambda \vec{x} \cdot h\left(Y_{1}(\vec{x}), \ldots, Y_{m}(\vec{x})\right)\right\},
\end{aligned}
$$

where h is a constant or $h \in \vec{x}$.

- Abs: Abstraction

$$
\begin{aligned}
& \{X(\vec{x}): \lambda y . t \triangleq \lambda z . s\} \cup A ; S ; \sigma \Longrightarrow \\
& \quad\{Y(\vec{x}, y): t \triangleq s\{z \mapsto y\}\} \cup A ; S ; \sigma\{X \mapsto \lambda \vec{x}, y . Y(\vec{x}, y)\} .
\end{aligned}
$$

- Sol: Solve

$$
\{X(\vec{x}): t \triangleq s\} \cup A ; S ; \sigma \Longrightarrow A ;\{Y(\vec{y}): t \triangleq s\} \cup S ; \sigma\{X \mapsto \lambda \vec{x} \cdot Y(\vec{y})\}
$$ where t and s are of basic type. $\operatorname{Head}(t) \neq \operatorname{Head}(s)$ or $\operatorname{Head}(t)=Z \notin \vec{x}$. \vec{y} is a subsequence of \vec{x} consisting of the variables that appear freely in t or s.

\Rightarrow Rec: Recover

$$
\begin{aligned}
& A ;\left\{X(\vec{x}): t_{1} \triangleq t_{2}, Z(\vec{z}): s_{1} \triangleq s_{2}\right\} \cup S ; \sigma \Longrightarrow \\
& \quad A ;\left\{X(\vec{x}): t_{1} \triangleq t_{2}\right\} \cup S ; \sigma\{Z \mapsto \lambda \vec{z} \cdot X(\vec{x} \pi)\}
\end{aligned}
$$

where $\pi:\{\vec{x}\} \mapsto\{\vec{z}\}$ is a bijection, extended as a substitution, such that $t_{1} \pi=s_{1}$ and $t_{2} \pi=s_{2}$.

Demonstration of \mathfrak{P}

Let $t=\lambda x, y \cdot f(x, y)$ and $s=\lambda x, y \cdot f(y, x)$.

$$
\begin{aligned}
&\{X: \lambda x, y \cdot f(x, y) \triangleq \lambda x, y \cdot f(y, x)\} ; \emptyset ; \varepsilon \\
& \Longrightarrow_{\text {Abs }}\left\{Y_{1}(x): \lambda y \cdot f(x, y) \triangleq \lambda y \cdot f(y, x)\right\} ; \emptyset ;\left\{X \mapsto \lambda x \cdot Y_{1}(x)\right\} \\
& \Longrightarrow_{\text {Abs }}\left\{Y_{2}(x, y): f(x, y) \triangleq f(y, x)\right\} ; \emptyset ;\left\{X \mapsto \lambda x, y \cdot Y_{2}(x, y)\right\} \\
& \Longrightarrow_{\text {Dec }}\left\{Y_{3}(x, y): x \triangleq y, Y_{4}(x, y): y \triangleq x\right\} ; \emptyset ; \\
&\left\{X \mapsto \lambda x, y \cdot f\left(Y_{3}(x, y), Y_{4}(x, y)\right)\right\} \\
& \Longrightarrow \text { Sol }\left\{Y_{4}(x, y): y \triangleq x\right\} ;\left\{Y_{3}(x, y): x \triangleq y\right\} ; \\
&\left\{X \mapsto \lambda x, y \cdot f\left(Y_{3}(x, y), Y_{4}(x, y)\right)\right\} \\
& \Longrightarrow \text { Sol } \emptyset ;\left\{Y_{3}(x, y): x \triangleq y, Y_{4}(x, y): y \triangleq x\right\} ; \\
&\left\{X \mapsto \lambda x, y \cdot f\left(Y_{3}(x, y), Y_{4}(x, y)\right)\right\} \\
& \Longrightarrow{ }_{\text {Rec }} \emptyset ;\left\{Y_{3}(x, y): x \triangleq y\right\} ; \\
&\left\{X \mapsto \lambda x, y \cdot f\left(Y_{3}(x, y), Y_{3}(y, x)\right), Y_{4} \mapsto \lambda x, y \cdot Y_{3}(y, x)\right\} .
\end{aligned}
$$

The computed result $r=X \sigma$ is $\lambda x, y . f\left(Y_{3}(x, y), Y_{3}(y, x)\right)$.
It generalizes $t=r\left\{Y_{3} \mapsto \lambda x, y . x\right\}$ and $s=r\left\{Y_{3} \mapsto \lambda x, y \cdot y\right\}$.

Matching Problem

- Rec: Recover

$$
\begin{aligned}
& A ;\left\{X(\vec{x}): t_{1} \triangleq t_{2}, Z(\vec{z}): s_{1} \triangleq s_{2}\right\} \cup S ; \sigma \Longrightarrow \\
& \quad A ;\left\{X(\vec{x}): t_{1} \triangleq t_{2}\right\} \cup S ; \sigma\{Z \mapsto \lambda \vec{z} \cdot X(\vec{x} \pi)\}
\end{aligned}
$$

where $\pi:\{\vec{X}\} \mapsto\{\vec{z}\}$ is a bijection, extended as a substitution, such that $t_{1} \pi=s_{1}$ and $t_{2} \pi=s_{2}$.

- Matching problem P, whose solution bijectively maps variables from a finite set D to a finite set R.
- The permuting matcher π is unique, if it exists.

Computing Permuted Matchers

- \mathfrak{M} computes a permuting matcher π, if it exists.
- \mathfrak{M} works on quintuples of the form $D ; R ; P ; \rho ; \pi$ where
- D is a set of domain variables,
- R is a set of range variables,
- P is a set of matching problems of the form $\left\{s_{1} \rightrightarrows t_{1}, \ldots, s_{m} \rightrightarrows t_{m}\right\}$,
- ρ is a substitution which keeps track of bound variable renamings,
- π is a substitution which keeps track of the permutations.
- \mathfrak{M} has two final states:
- The failure state \perp.
- The success state $D ; R ; \emptyset ; \rho ; \pi$.

Computing Permuted Matchers

- Create a variable renaming substitution ν to rename all the variables in D with fresh ones (domain/range separation).
- Take $D \nu ; R ;\left\{s_{1} \nu \rightrightarrows t_{1}, s_{2} \nu \rightrightarrows t_{2}\right\} ; \varepsilon ; \varepsilon$ as the input of the algorithm and apply the rules exhaustively.
- If no rule applies to a system with $P \neq \emptyset$, then this system is transformed into \perp.
- If \mathfrak{M} reaches the success state, then construct and return the permuting matcher $\left.(\nu \pi)\right|_{D}$.

The rules of \mathfrak{M}

- Dec-M: Decomposition

$$
D ; R ;\left\{h_{1}\left(t_{1}, \ldots, t_{m}\right) \rightrightarrows h_{2}\left(s_{1}, \ldots, s_{m}\right)\right\} \cup P ; \rho ; \pi \Longrightarrow
$$

$$
D ; R ;\left\{t_{1} \rightrightarrows s_{1}, \ldots, t_{m} \rightrightarrows s_{m}\right\} \cup P ; \rho ; \pi
$$

where each of h_{1} and h_{2} is either a constant or a variable. $h_{1} \pi=h_{2} \rho$ and $h_{1} \notin D$, or $h_{1} \pi=h_{2} \rho$ and $h_{2} \notin R$.

- Abs-M: Abstraction
$D ; R ;\{\lambda x . t \rightrightarrows \lambda y . s\} \cup P ; \rho ; \pi \Longrightarrow D ; R ;\{t \rightrightarrows s\} \cup P ; \rho\{y \mapsto x\} ; \pi$.
- Per-M: Permutation

$$
\begin{aligned}
& \{x\} \cup D ;\{y\} \cup R ;\left\{x\left(t_{1}, \ldots, t_{m}\right) \rightrightarrows y\left(s_{1}, \ldots, s_{m}\right)\right\} \cup P ; \rho ; \pi \Longrightarrow \\
& D ; R ;\left\{t_{1} \rightrightarrows s_{1}, \ldots, t_{m} \rightrightarrows s_{m}\right\} \cup P ; \rho ; \pi\{x \mapsto y\},
\end{aligned}
$$

where x and y have the same type.

Demonstration of \mathfrak{M}

- Compute the permuting matcher of $\{x(y, z) \rightrightarrows x(z, y)$, $X(y, \lambda u . u) \rightrightarrows X(z, \lambda v . v)\}$ from $\{x, y, z\}$ to $\{x, y, z\}$.

$$
\begin{aligned}
&\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\} ;\{x, y, z\} ;\left\{x^{\prime}\left(y^{\prime}, z^{\prime}\right) \rightrightarrows x(z, y), X\left(y^{\prime}, \lambda u . u\right) \rightrightarrows X(z, \lambda v . v)\right\} ; \varepsilon ; \varepsilon \\
& \Longrightarrow \text { Per-M }\left\{y^{\prime}, z^{\prime}\right\} ;\{y, z\} ;\left\{y^{\prime} \rightrightarrows z, z^{\prime} \rightrightarrows y, X\left(y^{\prime}, \lambda u \cdot u\right) \rightrightarrows X(z, \lambda v . v)\right\} ; \varepsilon ;\left\{x^{\prime} \mapsto x\right\} \\
& \Longrightarrow \text { Per-M }\left\{z^{\prime}\right\} ;\{y\} ;\left\{z^{\prime} \rightrightarrows y, X\left(y^{\prime}, \lambda u \cdot u\right) \rightrightarrows X(z, \lambda v . v)\right\} ; \varepsilon ;\left\{x^{\prime} \mapsto x, y^{\prime} \mapsto z\right\} \\
& \Longrightarrow \text { Per-M } \emptyset ; \emptyset ;\left\{X\left(y^{\prime}, \lambda u . u\right) \rightrightarrows X(z, \lambda v . v)\right\} ; \varepsilon ;\left\{x^{\prime} \mapsto x, y^{\prime} \mapsto z, z^{\prime} \mapsto y\right\} \\
& \Longrightarrow \text { Dec-M } \emptyset ; \emptyset ;\left\{y^{\prime} \rightrightarrows z, \lambda u \cdot u \rightrightarrows \lambda v \cdot v\right\} ; \varepsilon ;\left\{x^{\prime} \mapsto x, y^{\prime} \mapsto z, z^{\prime} \mapsto y\right\} \\
& \Longrightarrow \text { Dec-M } \emptyset ; \emptyset ;\{\lambda u . u \rightrightarrows \lambda v . v\} ; \varepsilon ;\left\{x^{\prime} \mapsto x, y^{\prime} \mapsto z, z^{\prime} \mapsto y\right\} \\
& \Longrightarrow \text { Abs-M } \emptyset ; \emptyset ;\{v \rightrightarrows u\} ;\{u \mapsto v\} ;\left\{x^{\prime} \mapsto x, y^{\prime} \mapsto z, z^{\prime} \mapsto y\right\} \\
& \Longrightarrow \text { Dec-M } \emptyset ; \emptyset ; \emptyset ;\{v \mapsto u\} ;\left\{x^{\prime} \mapsto x, y^{\prime} \mapsto z, z^{\prime} \mapsto y\right\} .
\end{aligned}
$$

- As result we obtain a substitution $\{x \mapsto x, y \mapsto z, z \mapsto y\}$.

Final remarks

- Proofs:
- Soundness, completeness, and termination of \mathfrak{M}.
- Soundness, completeness, and termination of \mathfrak{P}.
- Computed result is a pattern-Igg and unique modulo α-equivalence.
- Complexity analysis:
- \mathfrak{M} has linear time and space complexity.
- \mathfrak{P} has cubic time and linear space complexity.
- Implementation:
- http://www.risc.jku.at/projects/stout/software/hoau.php

