
A Variant of Higher-Order Anti-Unification

Alexander Baumgartner
Temur Kutsia

Jordi Levy
Mateu Villaret

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Anti-Unification Problem

I Given two terms t1, t2.

I Find a generalization term t such that t1, t2 are instances of t.

I Interesting generalizations are the least general ones (lggs).

Input terms f (a, g(b), b) and f (a, g(c), c)

Generalization f (a, x , y)
Lgg f (a, g(x), x)

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Goal / Setting

I The Setting:
I Input: Simply-typed lambda terms t1, t2.
I Output: Simply-typed higher-order pattern generalization of t1, t2.

I Provide an anti-unification algorithm to compute lggs:
I Design algorithm,
I Prove correctness,
I Complexity analysis,
I Implementation.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Goal / Setting

I The Setting:
I Input: Simply-typed lambda terms t1, t2.
I Output: Simply-typed higher-order pattern generalization of t1, t2.

I Provide an anti-unification algorithm to compute lggs:
I Design algorithm,
I Prove correctness,
I Complexity analysis,
I Implementation.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Simply Typed Lambda Calculus

I Basic types: δ1, δ2, . . .

I Type constructor: →
I Types: τ ::= δ | τ → τ

I Variables: X ,Y , x , y , . . .

I Constants: c , f , g , . . .

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Simply Typed Lambda Calculus

I λ-terms (t, s, . . .) are built using the grammar:

t ::= x | c | λx .t | t1 t2

I Terms are assumed to be written in η-long β-normal form:
t = λx1, . . . , xn.h(t1, . . . , tm) were h(t1, . . . , tm) has a basic type
and h is a constant or variable.

I The head of t is defined as Head(t) = h.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Substitution and Generalization

Definition (Substitution σ)

Finite set of pairs {X1 7→ t1, . . . ,Xn 7→ tn} where Xi and ti have
the same type and the X ’s are pairwise distinct variables.

I tσ for substitution application.

I t � s if there exists σ such that tσ = s.

Definition (Generalization and least general generalization)

A term t is a generalization of t1 and t2, if t � t1 and t � t2.
It is a lgg, if there is no generalization s which satisfies t ≺ s.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Substitution and Generalization

Definition (Substitution σ)

Finite set of pairs {X1 7→ t1, . . . ,Xn 7→ tn} where Xi and ti have
the same type and the X ’s are pairwise distinct variables.

I tσ for substitution application.

I t � s if there exists σ such that tσ = s.

Definition (Generalization and least general generalization)

A term t is a generalization of t1 and t2, if t � t1 and t � t2.
It is a lgg, if there is no generalization s which satisfies t ≺ s.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Higher-Order Patterns

I In general, there is no unique higher-order lgg.

Input terms: f (g(a, b), c) and f (c , h(a))
Higher-order lggs: f (X ,Y), X (c ,Y (a)) and X (Y (a), c)

I Consider special classes to guarantee uniqueness.

Definition (Higher-order pattern)

Arguments of free variables are distinct bound variables.

I λx .f (X (x),Y), f (c , λx .x) and λx .λy .X (λz .x(z), y) are patterns.

I λx .f (X (X (x)),Y), f (X (c), c) and λx .λy .X (x , x) are not patterns.

Input terms: f (g(a, b), c) and f (c , h(a))
Pattern-lgg: f (X ,Y)

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Higher-Order Patterns

I In general, there is no unique higher-order lgg.

Input terms: f (g(a, b), c) and f (c , h(a))
Higher-order lggs: f (X ,Y), X (c ,Y (a)) and X (Y (a), c)

I Consider special classes to guarantee uniqueness.

Definition (Higher-order pattern)

Arguments of free variables are distinct bound variables.

I λx .f (X (x),Y), f (c , λx .x) and λx .λy .X (λz .x(z), y) are patterns.

I λx .f (X (X (x)),Y), f (X (c), c) and λx .λy .X (x , x) are not patterns.

Input terms: f (g(a, b), c) and f (c , h(a))
Pattern-lgg: f (X ,Y)

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Input / Output

I Input: Higher-order terms t1 and t2 in η-long β-normal form.

I Output: Unique higher-order pattern generalization of t1 and t2.

Input terms
λx , y .f (g(x , x , y), g(x , y , y))
λx , y .f (h(x , x , y), h(x , y , y))

Pattern-lgg λx , y .f (Y1(x , y),Y2(x , y))
No pattern λx , y .f (Z (x , x , y),Z (x , y , y))

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Anti-Unification Problem (AUP)

Definition (Anti-unification problem)

An anti-unification problem is a triple X (#»x) : t , s where

I λ #»x .X (#»x), λ #»x .t, and λ #»x .s are terms of the same type,

I t and s are in η-long β-normal form,

I X does not occur in t and s.

Example: X (x , y) : f (x , x , y) , g(x , x , y)

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Rule Based System P

I P operates on a triple A; S ; σ.
I A is a set of AUPs like {X1(#»x1) : t1 , s1, . . . ,Xn(#»xn) : tn , sn}.
I S is a set of already solved AUPs (the store).
I σ is a substitution which maps variables to patterns.

I Each generalization variable Xi occurs only once in A ∪ S .

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Compute Pattern Generalization

I Initialize A; S ; σ with {X : t , s}; ∅; ε where X is fresh variable.

I Apply the rules of P successively as long as possible.

I Final system has the form ∅; S ; σ.

I Result Xσ is a pattern-lgg.

I Computed pattern-lgg is unique modulo α-equivalence.

I S contains all the differences between t and s.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

The Rules of P

I Y’s always denote fresh variables of the corresponding types.

I Dec: Decomposition
{X (#»x) : h(t1, . . . , tm) , h(s1, . . . , sm)} ·∪A; S ; σ =⇒
{Y1(

#»x) : t1 , s1, . . . ,Ym(
#»x) : tm , sm} ∪ A; S ;

σ{X 7→ λ #»x .h(Y1(
#»x), . . . ,Ym(

#»x))},
where h is a constant or h ∈ #»x .

I Abs: Abstraction
{X (#»x) : λy .t , λz .s} ·∪A; S ; σ =⇒
{Y (#»x , y) : t , s{z 7→ y}} ∪ A; S ; σ{X 7→ λ #»x , y .Y (#»x , y)}.

I Sol: Solve
{X (#»x) : t , s} ·∪A; S ; σ =⇒ A; {Y (#»y) : t , s} ∪ S ; σ{X 7→ λ #»x .Y (#»y)},

where t and s are of basic type. Head(t) 6= Head(s) or Head(t) = Z /∈ #»x .
#»y is a subsequence of #»x consisting of the variables that appear freely in t or s.

I Rec: Recover
A; {X (#»x) : t1 , t2,Z(

#»z) : s1 , s2} ·∪S ; σ =⇒
A; {X (#»x) : t1 , t2} ∪ S ; σ{Z 7→ λ #»z .X (#»x π)},

where π : { #»x } 7→ { #»z } is a bijection, extended as a substitution, such that
t1π = s1 and t2π = s2.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Demonstration of P

I Let t = λx , y .f (x , y) and s = λx , y .f (y , x).

{X : λx , y .f (x , y) , λx , y .f (y , x)}; ∅; ε

=⇒Abs {Y1(x) : λy .f (x , y) , λy .f (y , x)}; ∅; {X 7→ λx .Y1(x)}

=⇒Abs {Y2(x , y) : f (x , y) , f (y , x)}; ∅; {X 7→ λx , y .Y2(x , y)}

=⇒Dec {Y3(x , y) : x , y ,Y4(x , y) : y , x}; ∅;
{X 7→ λx , y .f (Y3(x , y),Y4(x , y))}

=⇒Sol {Y4(x , y) : y , x}; {Y3(x , y) : x , y};
{X 7→ λx , y .f (Y3(x , y),Y4(x , y))}

=⇒Sol ∅; {Y3(x , y) : x , y ,Y4(x , y) : y , x};
{X 7→ λx , y .f (Y3(x , y),Y4(x , y))}

=⇒Rec ∅; {Y3(x , y) : x , y};
{X 7→ λx , y .f (Y3(x , y),Y3(y , x)),Y4 7→ λx , y .Y3(y , x)}.

I The computed result r = Xσ is λx , y .f (Y3(x , y),Y3(y , x)).

I It generalizes t = r{Y3 7→ λx , y .x} and s = r{Y3 7→ λx , y .y}.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Matching Problem

I Rec: Recover
A; {X (#»x) : t1 , t2,Z (#»z) : s1 , s2} ·∪S ; σ =⇒

A; {X (#»x) : t1 , t2} ∪ S ; σ{Z 7→ λ #»z .X (#»x π)},
where π : { #»x } 7→ { #»z } is a bijection, extended as a substitution,
such that t1π = s1 and t2π = s2.

I Matching problem P, whose solution bijectively maps variables
from a finite set D to a finite set R.

I The permuting matcher π is unique, if it exists.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Computing Permuted Matchers

I M computes a permuting matcher π, if it exists.
I M works on quintuples of the form D; R; P; ρ; π where

I D is a set of domain variables,
I R is a set of range variables,
I P is a set of matching problems of the form {s1⇒ t1, . . . , sm⇒ tm},
I ρ is a substitution which keeps track of bound variable renamings,
I π is a substitution which keeps track of the permutations.

I M has two final states:
I The failure state ⊥.
I The success state D; R; ∅; ρ; π.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Computing Permuted Matchers

I Create a variable renaming substitution ν to rename all the
variables in D with fresh ones (domain/range separation).

I Take Dν; R; {s1ν⇒ t1, s2ν⇒ t2}; ε; ε as the input of the
algorithm and apply the rules exhaustively.

I If no rule applies to a system with P 6= ∅, then this system is
transformed into ⊥.

I If M reaches the success state, then construct and return the
permuting matcher (νπ)|D .

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

The rules of M

I Dec-M: Decomposition
D; R; {h1(t1, . . . , tm)⇒h2(s1, . . . , sm)} ·∪P; ρ; π =⇒

D; R; {t1⇒ s1, . . . , tm⇒ sm} ∪ P; ρ; π,
where each of h1 and h2 is either a constant or a variable.
h1π = h2ρ and h1 /∈ D, or h1π = h2ρ and h2 /∈ R.

I Abs-M: Abstraction
D; R; {λx .t⇒λy .s} ·∪P; ρ; π =⇒ D; R; {t⇒ s} ∪ P; ρ{y 7→ x}; π.

I Per-M: Permutation
{x} ·∪D; {y} ·∪R; {x(t1, . . . , tm)⇒ y(s1, . . . , sm)} ·∪P; ρ; π =⇒

D; R; {t1⇒ s1, . . . , tm⇒ sm} ∪ P; ρ; π{x 7→ y},
where x and y have the same type.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Demonstration of M

I Compute the permuting matcher of {x(y , z)⇒ x(z , y),
X (y , λu.u)⇒X (z , λv .v)} from {x , y , z} to {x , y , z}.

{x ′, y ′, z ′}; {x , y , z}; {x ′(y ′, z ′)⇒ x(z , y),X (y ′, λu.u)⇒X (z , λv .v)}; ε; ε
=⇒Per-M {y ′, z ′}; {y , z}; {y ′⇒ z , z ′⇒ y ,X (y ′, λu.u)⇒X (z , λv .v)}; ε; {x ′ 7→ x}
=⇒Per-M {z ′}; {y}; {z ′⇒ y ,X (y ′, λu.u)⇒X (z , λv .v)}; ε; {x ′ 7→ x , y ′ 7→ z}
=⇒Per-M ∅; ∅; {X (y ′, λu.u)⇒X (z , λv .v)}; ε; {x ′ 7→ x , y ′ 7→ z , z ′ 7→ y}
=⇒Dec-M ∅; ∅; {y ′⇒ z , λu.u⇒λv .v}; ε; {x ′ 7→ x , y ′ 7→ z , z ′ 7→ y}
=⇒Dec-M ∅; ∅; {λu.u⇒λv .v}; ε; {x ′ 7→ x , y ′ 7→ z , z ′ 7→ y}
=⇒Abs-M ∅; ∅; {v⇒u}; {u 7→ v}; {x ′ 7→ x , y ′ 7→ z , z ′ 7→ y}
=⇒Dec-M ∅; ∅; ∅; {v 7→ u}; {x ′ 7→ x , y ′ 7→ z , z ′ 7→ y}.

I As result we obtain a substitution {x 7→ x , y 7→ z , z 7→ y}.

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

Final remarks

I Proofs:
I Soundness, completeness, and termination of M.
I Soundness, completeness, and termination of P.
I Computed result is a pattern-lgg and unique modulo α-equivalence.

I Complexity analysis:
I M has linear time and space complexity.
I P has cubic time and linear space complexity.

I Implementation:
I http://www.risc.jku.at/projects/stout/software/hoau.php

Baumgartner, Kutsia, Levy, Villaret A Variant of Higher-Order Anti-Unification

