
Introduction to Maude

Introduction to Maude

Alexander Maletzky

2013-05-15

1 / 40



Introduction to Maude

1 Some Facts

2 Structure of Maude

3 Using Maude

4 Live Demonstration

5 Conclusion

2 / 40



Introduction to Maude
Some Facts

1 Some Facts

2 Structure of Maude

3 Using Maude

4 Live Demonstration

5 Conclusion

3 / 40



Introduction to Maude
Some Facts

Maude

Rewriting system operating on (typed) terms
Developed at SRI International
Open source (C++)
Current version: 2.6
Operating systems: Linux, MacOSX (sources may be
compiled on other platforms as well)
Lots of documentation available
URL: http://maude.cs.uiuc.edu/

4 / 40



Introduction to Maude
Structure of Maude

1 Some Facts

2 Structure of Maude

3 Using Maude

4 Live Demonstration

5 Conclusion

5 / 40



Introduction to Maude
Structure of Maude

Types in Maude: Sorts

Maude is strictly typed
Types are called sorts
User may define sorts as he wants
Sorts have no deeper meaning, only needed to build
well-formed terms
Hierarchies of sorts possible: Subsorts

6 / 40



Introduction to Maude
Structure of Maude

Example: Sorts

sorts Real Irrational Rational Integer Nat .
subsorts Irrational Rational < Real .
subsorts Nat < Integer < Rational .

Line 1: Declare several sorts (of numbers)
Lines 2-3: Define hierarchy of sorts, e. g. all rational and
irrational numbers are real numbers as well

7 / 40



Introduction to Maude
Structure of Maude

Data Elements: Operators

Maude operates on terms
Terms are built from operators
Operators are declared/defined by user
Operator: n-ary function
0-ary operators: Constants
When declaring operators, sorts of arguments/result have to
be given explicitly
Both prefix and mixfix notation possible

8 / 40



Introduction to Maude
Structure of Maude

Example: Operators

op 0 : -> Nat .
op S : Nat -> Nat .
ops _+_ _*_ : Nat Nat -> Nat .

Declare operators for arithmetic: Constant 0, unary successor
function S, binary functions + and *

S has to be “applied” in prefix notation, + and * may be
“applied” in mixfix notation
Example term: S(0 + S(S(0) * S(S(0))))

9 / 40



Introduction to Maude
Structure of Maude

Definition of Operators: Equations and Attributes

Operators are defined in terms of equations and attributes
Equations consist of left-hand-side (LHS), right-hand-side
(RHS), and condition (optional)
May involve variables to achieve more generality
Attributes equip operators with certain properties, e. g.
associativity, commutativity, identity element, . . .

10 / 40



Introduction to Maude
Structure of Maude

Equations

Equations are special kind of rewrite rules
Can be used to reduce given term to normal form
If LHS matches subterm (and condition is fulfilled), then this
subterm is replaced by RHS
Equations are supposed to “replace equals by equals”
However, RHS should be in some sense “simpler” than LHS
Hence, equations are used to simplify terms until normal form
is reached
Further properties are assumed implicitly: Church-Rosser,
termination
Properties are not checked, but can be checked by tools
provided by Maude

11 / 40



Introduction to Maude
Structure of Maude

Example: Equations

vars M, N : Nat .
eq N + 0 = N .
eq N + S(M) = S(N + M) .
ceq N * M = N if M == S(0) .

Line 1: Declare 2 variables M, N of sort Nat

Lines 2-3: Define addition as usual
Line 4: Conditional equation: Result of multiplication is first
argument if second argument is S(0)

12 / 40



Introduction to Maude
Structure of Maude

Attributes

Attributes of operator are taken into account when matching
is attempted
Example: If operator f is declared to be commutative and
LHS of equation is f(a, b), then LHS also matches term
f(b, a)

Most attributes could also be stated by means of equations,
but
Matching algorithm takes into account attributes in very
efficient way and
RHS would not be simpler than LHS in most cases (consider
commutativity)

13 / 40



Introduction to Maude
Structure of Maude

Example: Attributes

sorts Nat Set . subsort Nat < Set .
ops 0 1 2 : -> Nat .
op _ _ : Set Set -> Set [comm, assoc] .
op containsZero : Set -> Bool .

Line 3: Operator _ _ is commutative and associative
This operator can be regarded as “union of (multi-)sets”
We could then write, for instance
eq containsZero(0 Rest) = true .
where Rest is variable of sort Set
This equation is sufficient to get positive answer whenever set
contains 0
Reason: Although 0 may not be first element, due to
commutativity and associativity, any set containing 0 is
matched by LHS of equation

14 / 40



Introduction to Maude
Structure of Maude

State Transitions: Rules

Similar to equations, but not the same
Consist of LHS, RHS, label and condition (optional)
Again, if LHS matches some subterm, then this subterm is
replaced by RHS
Used to model state transitions (no “replace equals by
equals”)
Not assumed to have Church-Rosser/termination property

15 / 40



Introduction to Maude
Structure of Maude

Example: Rules

rl [birthday] : person(X, N) => person(X, N + S(0)) .
crl [get-married] : person(single, N) =>

person(married, N) if N >= 16 .

A person may have birthday at any time, but may get married
only if at least 16 years old
RHSs of rules are not simpler than LHSs
Labels (birthday, married) are optional
Operator person is only used to combine several properties of
persons

16 / 40



Introduction to Maude
Structure of Maude

Main Building Block: Modules

Modules define theories/systems
Combine all previously mentioned concepts
2 types of modules:

Functional modules: Define functional theories (e. g. natural
numbers) by means of equations, may not contain rules
System modules: Define systems (concurrent,
non-deterministic) by means of rules

Hierarchy: Modules may be built upon other modules, but
functional modules may only be built upon other functional
modules
Lots of predefined modules available

17 / 40



Introduction to Maude
Structure of Maude

Example: Functional Module

fmod NAT-NUMBERS is
sort Nat .

op 0 : -> Nat .
op S : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
op _>=_ : Nat Nat -> Bool .

vars M, N : Nat .
eq N + 0 = N .
eq N + S(M) = S(N + M) .
eq N >= 0 = true .
eq 0 >= S(M) = false .
eq S(N) >= S(M) = N >= M .

endfm
18 / 40



Introduction to Maude
Structure of Maude

Example: System Module

mod RELATIONSHIP is
protecting NAT-NUMBERS .

sorts Person State .

ops single engaged married : -> State .
op person : State Nat -> Person .

var X : State .
var N : Nat .
rl [birthday] : person(X, N) => person(X, N + S(0)) .
crl [get-engaged] : person(single, N) => person(engaged, N)

if N >= 16 .
rl [get-married] : person(engaged, N) => person(married, N) .
crl [las-vegas] : person(single, N) => person(married, N)

if N >= 16 .
crl [split-up] : X => single if X =/= single .

endm

19 / 40



Introduction to Maude
Using Maude

1 Some Facts

2 Structure of Maude

3 Using Maude

4 Live Demonstration

5 Conclusion

20 / 40



Introduction to Maude
Using Maude

Command reduce

reduce in module : term .

Reduces term term to canonical form using equations from
module module (no rules!)
Module may be functional or system
Output:

Number of rewrites (= equations)
CPU time
Sort of resulting term
Resulting term

21 / 40



Introduction to Maude
Using Maude

Example: reduce

Input:
reduce in NAT-NUMBERS :

(S(S(0)) + S(S(0))) >= (S(0) + S(S(0))) .

Output:
reduce in NAT-NUMBERS :

(S(S(0)) + S(S(0))) >= (S(0) + S(S(0))) .
rewrites: 10 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

22 / 40



Introduction to Maude
Using Maude

Command rewrite

rewrite [bound] in module : term .

Rewrites term term using rules and equations from module
module
At most bound rules are applied
Top-down rule-fair strategy: All rules that can be applied to
outermost operator are applied in fair way
Other rules might not be applied at all
In each step:

1 Rewrite term in 1 step
2 Reduce resulting term to normal form

→ Only normal forms are rewritten!
Output: Same as with reduce

23 / 40



Introduction to Maude
Using Maude

Command frewrite

frewrite [bound] in module : term .

Behaves similar to rewrite, but
Depth-first position-fair strategy
Output: Same as with rewrite

24 / 40



Introduction to Maude
Using Maude

System Module RELATIONSHIP

mod RELATIONSHIP is
protecting NAT-NUMBERS .

sorts Person State .

ops single engaged married : -> State .
op person : State Nat -> Person .

var X : State .
var N : Nat .
rl [birthday] : person(X, N) => person(X, N + S(0)) .
crl [get-engaged] : person(single, N) => person(engaged, N)

if N >= 16 .
rl [get-married] : person(engaged, N) => person(married, N) .
crl [las-vegas] : person(single, N) => person(married, N)

if N >= 16 .
crl [split-up] : X => single if X =/= single .

endm

25 / 40



Introduction to Maude
Using Maude

Example: rewrite

Input:
rewrite [7] in RELATIONSHIP : person(single, 15) .

Output:
rewrite [7] in RELATIONSHIP : person(single, 15) .
rewrites: 34 in 0ms cpu (0ms real) (~ rewrites/second)
result Person: person(married, 20)

Rule [split-up] will never be applied, since outermost
operator in its LHS is not person

Different if frewrite was used instead
Whenever rule [birthday] is applied, age is automatically
reduced to normal form

26 / 40



Introduction to Maude
Using Maude

Coherence

Coherence: Property of system module (equations, attributes,
rules)
t, t ′, u arbitrary terms such that

t can be rewritten in 1 step into t ′

u is normal from of t
If u can be rewritten into u′ in 1 step such that t ′ and u′ have
same normal from, then coherence property holds
Coherence allows using strategy pursued by rewrite and
frewrite: Only rewrite normal forms
Coherence is implicitly assumed and may be checked by tools
provided by Maude

27 / 40



Introduction to Maude
Using Maude

Command search

search [n, m] in module : t1 arrow t2 such that C .

Search for all states reachable from initial state that meet
certain conditions
n: Maximum number of solutions
m: Maximum search depth
t1: Initial state
t2: Pattern of final states (may involve variables)
arrow: Defines how final states are reached:

=>1: Exactly 1 step
=>+: At least one step
=>*: Arbitrarily many steps
=>!: Final states must be terminal

C : Optional condition the final states have to meet

28 / 40



Introduction to Maude
Using Maude

Example: search

Input:
search [1,10] in RELATIONSHIP :

person(single, 15) =>* person(married, 20) .

Output:
search [1,10] in RELATIONSHIP :

person(single, 15) =>* person(married, 20) .
Solution 1 (state 16)
states: 17
rewrites: 264 in 0ms cpu(2ms real) (~ rewrites/second)
empty substitution

It is also possible to see path from initial state to final state

29 / 40



Introduction to Maude
Using Maude

Model Checking: Invariants

search can be used to model-check systems w. r. t. invariants
Invariant: Property that holds in all states reachable from
initial state
Just search for states that violate invariant
If none found → Invariant holds
Otherwise → Counterexample
Drawback: Only works for finitely many states

30 / 40



Introduction to Maude
Using Maude

LTL Model Checking

Maude supports LTL model checking
No Maude-command, but predefined functional module with
main operator modelCheck

Systems that have to be checked need to include this module
Command: reduce modelCheck(state,formula) .

state: Initial state
formula: LTL formula
Constraint: Finitely many reachable states
Example: → Later (live demonstration)

31 / 40



Introduction to Maude
Using Maude

LTL Satisfiability/Tautology

Maude supports testing LTL formulas for satisfiability and
tautology
Satisfiability: There exists system that satisfies formula
Tautology: Formula always holds, i. e. negation of formula is
unsatisfiable
In case of satisfiability, Maude returns model in terms of initial
path and cycle

32 / 40



Introduction to Maude
Using Maude

Example: Satisfiability

Input:
reduce in SAT-SOLVER-TEST :

satSolve(a /\ (O b) /\ (O O ((~ c) /\ [](c \/ (O c))))) .

Output:
reduce in SAT-SOLVER-TEST :

satSolve(O O (~ c /\ [](c \/ O c)) /\ (a /\ O b)) .
rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)
result SatSolveResult: model(a ; b, (~ c) ; c)

Hence, formula is satisfiable

33 / 40



Introduction to Maude
Using Maude

Example: Tautology

Input:
reduce in SAT-SOLVER-TEST :

tautCheck((a => (O a)) <-> (a => ([] a))) .

Output:
reduce in SAT-SOLVER-TEST :

tautCheck((a => O a) <-> a => []a) .
rewrites: 49 in 0ms cpu (1ms real)
(~ rewrites/second)
result Bool: true

Hence, LTL formula is tautology
Otherwise we would also get counterexample

34 / 40



Introduction to Maude
Live Demonstration

1 Some Facts

2 Structure of Maude

3 Using Maude

4 Live Demonstration

5 Conclusion

35 / 40



Introduction to Maude
Live Demonstration

Example System BANK-ACCOUNT

Message-passing system
Objects: Bank accounts

ID
Balance

Messages:
Credit
Debit
Transfer-from-to

Objects and messages are contained in set → Order is not
relevant
Set is built from binary operator having commutativity and
associativity attributes
Powerful predefined module for modelling such
(object-oriented) systems

36 / 40



Introduction to Maude
Live Demonstration

Model-Checking BANK-ACCOUNT

Atomic predicate debts(A)

debts(A) holds in state S iff balance of account A is negative
System is model-checked for never reaching state where
debts(A) holds for some account A
LTL formula: �¬debts(A)
Since this is an invariant, command search could be used as
well

37 / 40



Introduction to Maude
Conclusion

1 Some Facts

2 Structure of Maude

3 Using Maude

4 Live Demonstration

5 Conclusion

38 / 40



Introduction to Maude
Conclusion

Additional Features

Highly flexible, user-definable syntax (additional attributes for
correct parsing of mixfix operators)
Efficient implementation
Verification capabilities

Church-Rosser
Termination
Coherence
Sufficient completeness
. . .

Reflection: Represent terms, equations, rules, modules, . . . as
terms at meta-level and work with them
Reflection is useful to define different rewriting-strategies

39 / 40



Introduction to Maude
Conclusion

Sources

http://maude.cs.uiuc.edu/
M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,
J. Meseguer, C. Talcott. Maude Manual (Version 2.6).
January 2011
T. McCombs. Maude 2.0 Primer. August 2003
M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,
J. Meseguer, J. Quesada. A Maude Tutorial. March 2000
M. Clavel, S. Eker, P. Lincoln, J. Meseguer. Principles of
Maude. In: Electronic Notes in Theoretical Computer Science,
Vol. 4, 1996

40 / 40


	Some Facts
	Structure of Maude
	Using Maude
	Live Demonstration
	Conclusion

