Introduction to Maude

Alexander Maletzky

2013-05-15
(1) Some Facts
(2) Structure of Maude
(3) Using Maude

4 Live Demonstration
(5) Conclusion

(1) Some Facts

(2) Structure of Maude

3 Using Maude

4 Live Demonstration
(5) Conclusion

Maude

- Rewriting system operating on (typed) terms
- Developed at SRI International
- Open source (C++)
- Current version: 2.6
- Operating systems: Linux, MacOSX (sources may be compiled on other platforms as well)
- Lots of documentation available
- URL: http://maude.cs.uiuc.edu/

(1) Some Facts

(2) Structure of Maude

(3) Using Maude

4 Live Demonstration
(5) Conclusion

Types in Maude: Sorts

- Maude is strictly typed
- Types are called sorts
- User may define sorts as he wants
- Sorts have no deeper meaning, only needed to build well-formed terms
- Hierarchies of sorts possible: Subsorts

Example: Sorts

```
sorts Real Irrational Rational Integer Nat .
subsorts Irrational Rational < Real .
subsorts Nat < Integer < Rational .
```

- Line 1: Declare several sorts (of numbers)
- Lines 2-3: Define hierarchy of sorts, e.g. all rational and irrational numbers are real numbers as well

Data Elements: Operators

- Maude operates on terms
- Terms are built from operators
- Operators are declared/defined by user
- Operator: n-ary function
- 0-ary operators: Constants
- When declaring operators, sorts of arguments/result have to be given explicitly
- Both prefix and mixfix notation possible

Example: Operators

op 0 : -> Nat .
op S : Nat -> Nat .
ops _+_ _*_ : Nat Nat -> Nat .

- Declare operators for arithmetic: Constant 0, unary successor function S, binary functions + and *
- S has to be "applied" in prefix notation, + and $*$ may be "applied" in mixfix notation
- Example term: S(0 + S(S(0) * S(S(0))))

Definition of Operators: Equations and Attributes

- Operators are defined in terms of equations and attributes
- Equations consist of left-hand-side (LHS), right-hand-side (RHS), and condition (optional)
- May involve variables to achieve more generality
- Attributes equip operators with certain properties, e.g. associativity, commutativity, identity element, ...

Equations

- Equations are special kind of rewrite rules
- Can be used to reduce given term to normal form
- If LHS matches subterm (and condition is fulfilled), then this subterm is replaced by RHS
- Equations are supposed to "replace equals by equals"
- However, RHS should be in some sense "simpler" than LHS
- Hence, equations are used to simplify terms until normal form is reached
- Further properties are assumed implicitly: Church-Rosser, termination
- Properties are not checked, but can be checked by tools provided by Maude

Example: Equations

```
vars M, N : Nat .
eq \(N+0=N\).
eq \(N+S(M)=S(N+M)\).
ceq \(N * M=N\) if \(M==S(0)\).
```

- Line 1: Declare 2 variables M, N of sort Nat
- Lines 2-3: Define addition as usual
- Line 4: Conditional equation: Result of multiplication is first argument if second argument is $\mathrm{S}(0)$

Attributes

- Attributes of operator are taken into account when matching is attempted
- Example: If operator f is declared to be commutative and LHS of equation is $f(a, b)$, then LHS also matches term f (b, a)
- Most attributes could also be stated by means of equations, but
- Matching algorithm takes into account attributes in very efficient way and
- RHS would not be simpler than LHS in most cases (consider commutativity)

Example: Attributes

```
sorts Nat Set . subsort Nat < Set .
ops 0 1 2 : -> Nat .
op _ _ : Set Set -> Set [comm, assoc] .
op containsZero : Set -> Bool .
```

- Line 3: Operator _ _ is commutative and associative
- This operator can be regarded as "union of (multi-)sets"
- We could then write, for instance
eq containsZero(0 Rest) = true .
where Rest is variable of sort Set
- This equation is sufficient to get positive answer whenever set contains 0
- Reason: Although 0 may not be first element, due to commutativity and associativity, any set containing 0 is matched by LHS of equation

State Transitions: Rules

- Similar to equations, but not the same
- Consist of LHS, RHS, label and condition (optional)
- Again, if LHS matches some subterm, then this subterm is replaced by RHS
- Used to model state transitions (no "replace equals by equals")
- Not assumed to have Church-Rosser/termination property

Example: Rules

```
rl [birthday] : person(X, N) => person(X, N + S(0)) .
crl [get-married] : person(single, N) =>
    person(married, N) if N >= 16.
```

- A person may have birthday at any time, but may get married only if at least 16 years old
- RHSs of rules are not simpler than LHSs
- Labels (birthday, married) are optional
- Operator person is only used to combine several properties of persons

Main Building Block: Modules

- Modules define theories/systems
- Combine all previously mentioned concepts
- 2 types of modules:
- Functional modules: Define functional theories (e.g. natural numbers) by means of equations, may not contain rules
- System modules: Define systems (concurrent, non-deterministic) by means of rules
- Hierarchy: Modules may be built upon other modules, but functional modules may only be built upon other functional modules
- Lots of predefined modules available

Example: Functional Module

fmod NAT-NUMBERS is
sort Nat .

$$
\begin{aligned}
& \text { op } 0 \text { : }->\text { Nat . } \\
& \text { op S : Nat }->\text { Nat . } \\
& \text { op _+_ : Nat Nat } \rightarrow \text { Nat . } \\
& \text { op _>=_ : Nat Nat } \rightarrow \text { Bool. . }
\end{aligned}
$$

$$
\text { vars } \mathrm{M}, \mathrm{~N}: \text { Nat . }
$$

$$
\mathrm{eq} N+0=N
$$

$$
\text { eq } N+S(M)=S(N+M)
$$

$$
\text { eq } N>=0=\text { true }
$$

$$
\text { eq } 0>=S(M)=\text { false }
$$

$$
\text { eq } S(N)>=S(M)=N>=M
$$

endfm

Example: System Module

```
mod RELATIONSHIP is
    protecting NAT-NUMBERS
    sorts Person State .
    ops single engaged married : -> State .
    op person : State Nat -> Person .
    var X : State .
    var N : Nat .
    rl [birthday] : person(X,N) => person(X,N + S(0)).
    crl [get-engaged] : person(single, N) => person(engaged, N)
        if N >= 16 .
    rl [get-married] : person(engaged, N) => person(married, N) .
    crl [las-vegas] : person(single, N) => person(married, N)
        if N >= 16 .
    crl [split-up] : X => single if X =/= single .
endm
```


(1) Some Facts

(2) Structure of Maude

(3) Using Maude

4 Live Demonstration
(5) Conclusion

Command reduce

- reduce in module : term .
- Reduces term term to canonical form using equations from module module (no rules!)
- Module may be functional or system
- Output:
- Number of rewrites (= equations)
- CPU time
- Sort of resulting term
- Resulting term

Example: reduce

- Input:
reduce in NAT-NUMBERS : $(S(S(0))+S(S(0)))>=(S(0)+S(S(0)))$.
- Output:
reduce in NAT-NUMBERS : $(S(S(0))+S(S(0)))>=(S(0)+S(S(0)))$.
rewrites: 10 in 0 ms cpu (Oms real) (~ rewrites/second) result Bool: true

Command rewrite

- rewrite [bound] in module : term .
- Rewrites term term using rules and equations from module module
- At most bound rules are applied
- Top-down rule-fair strategy: All rules that can be applied to outermost operator are applied in fair way
- Other rules might not be applied at all
- In each step:
(1) Rewrite term in 1 step
(2) Reduce resulting term to normal form
\rightarrow Only normal forms are rewritten!
- Output: Same as with reduce

Command frewrite

- frewrite [bound] in module : term .
- Behaves similar to rewrite, but
- Depth-first position-fair strategy
- Output: Same as with rewrite

System Module RELATIONSHIP

```
mod RELATIONSHIP is
    protecting NAT-NUMBERS .
    sorts Person State .
    ops single engaged married : -> State .
    op person : State Nat -> Person .
    var X : State .
    var N : Nat .
    rl [birthday] : person(X,N) => person(X,N + S(0)).
    crl [get-engaged] : person(single, N) => person(engaged, N)
        if N >= 16 .
    rl [get-married] : person(engaged, N) => person(married, N) .
    crl [las-vegas] : person(single, N) => person(married, N)
        if N >= 16.
    crl [split-up] : X => single if X =/= single .
endm
```


Example: rewrite

- Input:
rewrite [7] in RELATIONSHIP : person(single, 15) .
- Output:
rewrite [7] in RELATIONSHIP : person(single, 15) . rewrites: 34 in Oms cpu (Oms real) (~ rewrites/second) result Person: person(married, 20)
- Rule [split-up] will never be applied, since outermost operator in its LHS is not person
- Different if frewrite was used instead
- Whenever rule [birthday] is applied, age is automatically reduced to normal form

Coherence

- Coherence: Property of system module (equations, attributes, rules)
- t, t^{\prime}, u arbitrary terms such that
- t can be rewritten in 1 step into t^{\prime}
- u is normal from of t
- If u can be rewritten into u^{\prime} in 1 step such that t^{\prime} and u^{\prime} have same normal from, then coherence property holds
- Coherence allows using strategy pursued by rewrite and frewrite: Only rewrite normal forms
- Coherence is implicitly assumed and may be checked by tools provided by Maude

Command search

- search $[n, m$] in module : $t 1$ arrow t2 such that C.
- Search for all states reachable from initial state that meet certain conditions
- n : Maximum number of solutions
- m: Maximum search depth
- t1: Initial state
- t2: Pattern of final states (may involve variables)
- arrow. Defines how final states are reached:
- =>1: Exactly 1 step
- =>+: At least one step
- =>*: Arbitrarily many steps
- =>!: Final states must be terminal
- C: Optional condition the final states have to meet

Example: search

- Input:
search [1,10] in RELATIONSHIP :

```
        person(single, 15) =>* person(married, 20) .
```

- Output:
search [1,10] in RELATIONSHIP :
person(single, 15) =>* person(married, 20) .
Solution 1 (state 16)
states: 17
rewrites: 264 in 0 ms cpu(2ms real) (~ rewrites/second) empty substitution
- It is also possible to see path from initial state to final state

Model Checking: Invariants

- search can be used to model-check systems w.r.t. invariants
- Invariant: Property that holds in all states reachable from initial state
- Just search for states that violate invariant
- If none found \rightarrow Invariant holds
- Otherwise \rightarrow Counterexample
- Drawback: Only works for finitely many states

LTL Model Checking

- Maude supports LTL model checking
- No Maude-command, but predefined functional module with main operator modelCheck
- Systems that have to be checked need to include this module
- Command: reduce modelCheck(state,formula) .
- state: Initial state
- formula: LTL formula
- Constraint: Finitely many reachable states
- Example: \rightarrow Later (live demonstration)

LTL Satisfiability/Tautology

- Maude supports testing LTL formulas for satisfiability and tautology
- Satisfiability: There exists system that satisfies formula
- Tautology: Formula always holds, i.e. negation of formula is unsatisfiable
- In case of satisfiability, Maude returns model in terms of initial path and cycle

Example: Satisfiability

- Input:
reduce in SAT-SOLVER-TEST :

```
satSolve(a /\ (O b) /\ (0 O ((~ c) /\ [](c \/ (O c))))) .
```

- Output:
reduce in SAT-SOLVER-TEST :
 rewrites: 2 in 0 ms cpu (Oms real) (~ rewrites/second) result SatSolveResult: model(a ; b, (~ c) ; c)
- Hence, formula is satisfiable

Example: Tautology

- Input:
reduce in SAT-SOLVER-TEST :

```
        tautCheck((a => (O a)) <-> (a => ([] a))) .
```

- Output:
reduce in SAT-SOLVER-TEST :
tautCheck((a => 0 a) <-> a => []a) .
rewrites: 49 in 0 ms cpu (1ms real)
(~ rewrites/second)
result Bool: true
- Hence, LTL formula is tautology
- Otherwise we would also get counterexample

(1) Some Facts

(2) Structure of Maude

3 Using Maude

4 Live Demonstration
(5) Conclusion

Example System BANK-ACCOUNT

- Message-passing system
- Objects: Bank accounts
- ID
- Balance
- Messages:
- Credit
- Debit
- Transfer-from-to
- Objects and messages are contained in set \rightarrow Order is not relevant
- Set is built from binary operator having commutativity and associativity attributes
- Powerful predefined module for modelling such (object-oriented) systems

Model-Checking BANK-ACCOUNT

- Atomic predicate debts (A)
- debts (A) holds in state S iff balance of account A is negative
- System is model-checked for never reaching state where debts (A) holds for some account A
- LTL formula: $\square \neg \operatorname{debts}(A)$
- Since this is an invariant, command search could be used as well
(1) Some Facts

(2) Structure of Maude

(3) Using Maude

4 Live Demonstration
(5) Conclusion

Additional Features

- Highly flexible, user-definable syntax (additional attributes for correct parsing of mixfix operators)
- Efficient implementation
- Verification capabilities
- Church-Rosser
- Termination
- Coherence
- Sufficient completeness
- ...
- Reflection: Represent terms, equations, rules, modules, ... as terms at meta-level and work with them
- Reflection is useful to define different rewriting-strategies

Sources

- http://maude.cs.uiuc.edu/
- M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C. Talcott. Maude Manual (Version 2.6). January 2011
- T. McCombs. Maude 2.0 Primer. August 2003
- M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, J. Quesada. A Maude Tutorial. March 2000
- M. Clavel, S. Eker, P. Lincoln, J. Meseguer. Principles of Maude. In: Electronic Notes in Theoretical Computer Science, Vol. 4, 1996

