Introduction to Maude

Introduction to Maude

Alexander Maletzky

2013-05-15

Introduction to Maude

@ Some Facts

© Structure of Maude
© Using Maude

@ Live Demonstration

© Conclusion

N

40

Introduction to Maude

Some Facts

@ Some Facts

Introduction to Maude

Some Facts

Maude

Rewriting system operating on (typed) terms
Developed at SRI International

Open source (C++)

Current version: 2.6

Operating systems: Linux, MacOSX (sources may be
compiled on other platforms as well)

Lots of documentation available
URL: http://maude.cs.uiuc.edu/

Introduction to Maude

Structure of Maude

© Structure of Maude

Introduction to Maude
Structure of Maude

Types in Maude: Sorts

e Maude is strictly typed

@ Types are called sorts

@ User may define sorts as he wants
o

Sorts have no deeper meaning, only needed to build
well-formed terms

Hierarchies of sorts possible: Subsorts

Introduction to Maude
Structure of Maude

Example: Sorts

sorts Real Irrational Rational Integer Nat
subsorts Irrational Rational < Real
subsorts Nat < Integer < Rational

@ Line 1: Declare several sorts (of numbers)

o Lines 2-3: Define hierarchy of sorts, e. g. all rational and
irrational numbers are real numbers as well

Introduction to Maude
Structure of Maude

Data Elements: Operators

Maude operates on terms

Terms are built from operators
Operators are declared/defined by user
Operator: n-ary function

0-ary operators: Constants

When declaring operators, sorts of arguments/result have to
be given explicitly

Both prefix and mixfix notation possible

Introduction to Maude
Structure of Maude

Example: Operators

op 0 : —-> Nat
op S : Nat -> Nat
ops _+_ _*_ : Nat Nat -> Nat

@ Declare operators for arithmetic: Constant 0, unary successor
function 8, binary functions + and *

@ S has to be “applied” in prefix notation, + and * may be
“applied” in mixfix notation

@ Example term: S(0 + S(S(0) * S(S(0))))

Introduction to Maude
Structure of Maude

Definition of Operators: Equations and Attributes

@ Operators are defined in terms of equations and attributes

e Equations consist of left-hand-side (LHS), right-hand-side
(RHS), and condition (optional)

@ May involve variables to achieve more generality

o Attributes equip operators with certain properties, e. g.
associativity, commutativity, identity element, ...

10/40

Introduction to Maude
Structure of Maude

Equations

@ Equations are special kind of rewrite rules
@ Can be used to reduce given term to normal form

@ If LHS matches subterm (and condition is fulfilled), then this
subterm is replaced by RHS

@ Equations are supposed to “replace equals by equals”
@ However, RHS should be in some sense “simpler” than LHS

@ Hence, equations are used to simplify terms until normal form
is reached

@ Further properties are assumed implicitly: Church-Rosser,
termination

@ Properties are not checked, but can be checked by tools
provided by Maude

11 /40

Introduction to Maude
Structure of Maude

Example: Equations

vars M, N : Nat

eq N+ 0=N.

eq N + S(M) = S(N + M
ceq N * M = N if M == S(0)

@ Line 1: Declare 2 variables M, N of sort Nat
@ Lines 2-3: Define addition as usual

@ Line 4: Conditional equation: Result of multiplication is first
argument if second argument is S(0)

12 /40

Introduction to Maude
Structure of Maude

Attributes

o Attributes of operator are taken into account when matching
is attempted

o Example: If operator f is declared to be commutative and
LHS of equation is f(a, b), then LHS also matches term
f(b, a)

@ Most attributes could also be stated by means of equations,
but

@ Matching algorithm takes into account attributes in very
efficient way and

@ RHS would not be simpler than LHS in most cases (consider
commutativity)

13 /40

Introduction to Maude
Structure of Maude

Example: Attributes

sorts Nat Set . subsort Nat < Set .
ops 01 2 : -> Nat .

op _ _ : Set Set -> Set [comm, assoc]
op containsZero : Set -> Bool .

@ Line 3: Operator _ _ is commutative and associative

@ This operator can be regarded as “union of (multi-)sets”

@ We could then write, for instance
eq containsZero(0 Rest) = true
where Rest is variable of sort Set

@ This equation is sufficient to get positive answer whenever set
contains 0

@ Reason: Although 0 may not be first element, due to
commutativity and associativity, any set containing O is
matched by LHS of equation

14 /40

Introduction to Maude
Structure of Maude

State Transitions: Rules

@ Similar to equations, but not the same
e Consist of LHS, RHS, label and condition (optional)

@ Again, if LHS matches some subterm, then this subterm is
replaced by RHS

@ Used to model state transitions (no “replace equals by
equals”)

@ Not assumed to have Church-Rosser/termination property

15 /40

Introduction to Maude
Structure of Maude

Example: Rules

rl [birthday] : person(X, N) => person(X, N + S(0))
crl [get-married] : person(single, N) =>
person(married, N) if N >= 16 .

@ A person may have birthday at any time, but may get married
only if at least 16 years old

@ RHSs of rules are not simpler than LHSs
@ Labels (birthday, married) are optional

o Operator person is only used to combine several properties of
persons

16 /40

Introduction to Maude
Structure of Maude

Main Building Block: Modules

Modules define theories/systems

Combine all previously mentioned concepts

2 types of modules:

o Functional modules: Define functional theories (e.g. natural
numbers) by means of equations, may not contain rules

o System modules: Define systems (concurrent,
non-deterministic) by means of rules

Hierarchy: Modules may be built upon other modules, but
functional modules may only be built upon other functional
modules

Lots of predefined modules available

17 /40

Introduction to Maude
Structure of Maude

Example: Functional Module

fmod NAT-NUMBERS is

sort Nat

op 0 : -> Nat

op S : Nat —-> Nat

op _+_ : Nat Nat -> Nat

op _>=_ : Nat Nat -> Bool .

vars M, N : Nat
eq N+ 0=N
eq N + S(M) = S(N + M)
eq N >= 0 = true
eq 0 >= S(M) = false
eq S(N) >= S(M) =N > M .
endfm
18 /40

Introduction to Maude
Structure of Maude

Example: System Module

mod RELATIONSHIP is
protecting NAT-NUMBERS .

sorts Person State .

ops single engaged married : -> State .
op person : State Nat -> Person .

var X : State .

var N : Nat

rl [birthday] : person(X, N) => person(X, N + S(0))

crl [get-engaged] : person(single, N) => person(engaged, N)

if N >= 16 .
rl [get-married] : person(engaged, N) => person(married, N)
crl [las-vegas] : person(single, N) => person(married, N)
if N >= 16 .

crl [split-up]l : X => single if X =/= single
endm

19 /40

Introduction to Maude

Using Maude

© Using Maude

20 /40

Introduction to Maude
Using Maude

Command reduce

@ reduce in module : term .

@ Reduces term term to canonical form using equations from
module module (no rules!)

@ Module may be functional or system
e Output:

o Number of rewrites (= equations)
e CPU time

e Sort of resulting term

o Resulting term

21 /40

Introduction to Maude
Using Maude

Example: reduce

@ Input:
reduce in NAT-NUMBERS :
(8(8(0)) + 8(s(0))) >= (8(0) + S(8(0)))
e Output:
reduce in NAT-NUMBERS :
(8(8(0)) + 8(8(0))) >= (8(0) + S(8(0)))
rewrites: 10 in Oms cpu (Oms real) (~ rewrites/second)
result Bool: true

22 /40

Introduction to Maude
Using Maude

Command rewrite

@ rewrite [bound] in module : term .

@ Rewrites term term using rules and equations from module
module

@ At most bound rules are applied

@ Top-down rule-fair strategy: All rules that can be applied to
outermost operator are applied in fair way

@ Other rules might not be applied at all
@ In each step:

© Rewrite term in 1 step
@ Reduce resulting term to normal form

— Only normal forms are rewritten!

@ OQutput: Same as with reduce

23 /40

Introduction to Maude
Using Maude

Command frewrite

frewrite [bound] in module : term .
Behaves similar to rewrite, but
Depth-first position-fair strategy

Output: Same as with rewrite

24 /40

Introduction to Maude
Using Maude

System Module RELATIONSHIP

mod RELATIONSHIP is
protecting NAT-NUMBERS .

sorts Person State .

ops single engaged married : -> State .
op person : State Nat -> Person .

var X : State .

var N : Nat

rl [birthday] : person(X, N) => person(X, N + S(0))

crl [get-engaged] : person(single, N) => person(engaged, N)

if N >= 16 .
rl [get-married] : person(engaged, N) => person(married, N)
crl [las-vegas] : person(single, N) => person(married, N)
if N >= 16 .

crl [split-up]l : X => single if X =/= single
endm

25 /40

Introduction to Maude
Using Maude

Example: rewrite

@ Input:
rewrite [7] in RELATIONSHIP : person(single, 15)

o Output:
rewrite [7] in RELATIONSHIP : person(single, 15)
rewrites: 34 in Oms cpu (Oms real) (~ rewrites/second)
result Person: person(married, 20)

@ Rule [split-up] will never be applied, since outermost
operator in its LHS is not person

o Different if frewrite was used instead

@ Whenever rule [birthday] is applied, age is automatically
reduced to normal form

26 /40

Introduction to Maude
Using Maude

Coherence

o Coherence: Property of system module (equations, attributes,
rules)
e t, t/, u arbitrary terms such that
e t can be rewritten in 1 step into t’
e u is normal from of t
@ If u can be rewritten into v/ in 1 step such that t’ and u’ have
same normal from, then coherence property holds
@ Coherence allows using strategy pursued by rewrite and
frewrite: Only rewrite normal forms
@ Coherence is implicitly assumed and may be checked by tools
provided by Maude

27 /40

Introduction to Maude
Using Maude

Command search

@ search [n, m] in module : tl arrow t2 such that C .

Search for all states reachable from initial state that meet
certain conditions

n: Maximum number of solutions
m: Maximum search depth
tl: Initial state

t2: Pattern of final states (may involve variables)

arrow: Defines how final states are reached:
e =>1: Exactly 1 step

=>+: At least one step

e =>x: Arbitrarily many steps

e =>!: Final states must be terminal

C: Optional condition the final states have to meet

28 /40

Introduction to Maude
Using Maude

Example: search

@ Input:
search [1,10] in RELATIONSHIP :
person(single, 15) =>* person(married, 20)
e Output:
search [1,10] in RELATIONSHIP :
person(single, 15) =>* person(married, 20)
Solution 1 (state 16)
states: 17
rewrites: 264 in Oms cpu(2ms real) (~ rewrites/second)

empty substitution

@ It is also possible to see path from initial state to final state

29 /40

Introduction to
Using Maude

Maude

Model Checking: Invariants

search can be used to model-check systems w.r.t. invariants

Invariant: Property that holds in all states reachable from
initial state

Just search for states that violate invariant
If none found — Invariant holds
Otherwise — Counterexample

Drawback: Only works for finitely many states

30 /40

Introduction to Maude
Using Maude

LTL Model Checking

@ Maude supports LTL model checking

No Maude-command, but predefined functional module with
main operator modelCheck

Systems that have to be checked need to include this module
Command: reduce modelCheck(state, formula)

state: Initial state

formula: LTL formula

Constraint: Finitely many reachable states

Example: — Later (live demonstration)

31/40

Introduction to Maude
Using Maude

LTL Satisfiability/ Tautology

Maude supports testing LTL formulas for satisfiability and
tautology

Satisfiability: There exists system that satisfies formula

Tautology: Formula always holds, i.e. negation of formula is
unsatisfiable

@ In case of satisfiability, Maude returns model in terms of initial
path and cycle

32 /40

Introduction to Maude
Using Maude

Example: Satisfiability

@ Input:
reduce in SAT-SOLVER-TEST
satSolve(a /\ (0 b) /\ (O 0 ((~c) /\ [\/ @ NN
e Output:
reduce in SAT-SOLVER-TEST :
satSolve(0 0 (~ ¢ /\ [1(c \/ 0 ¢c)) /\ (a /\ 0 b))

rewrites: 2 in Oms cpu (Oms real) (~ rewrites/second)
result SatSolveResult: model(a ; b, (~ c) ; c)

@ Hence, formula is satisfiable

33 /40

Introduction to Maude
Using Maude

Example: Tautology

@ Input:
reduce in SAT-SOLVER-TEST :
tautCheck((a => (0 a)) <> (a => ([]1 a)))
e Output:
reduce in SAT-SOLVER-TEST :
tautCheck((a => 0 a) <-> a => [Ja)
rewrites: 49 in Oms cpu (lms real)
(~ rewrites/second)

result Bool: true
@ Hence, LTL formula is tautology

@ Otherwise we would also get counterexample

34 /40

Introduction to Maude

Live Demonstration

@ Live Demonstration

35 /40

Introduction to Maude
Live Demonstration

Example System BANK-ACCOUNT

Message-passing system
@ Objects: Bank accounts

e ID
o Balance

@ Messages:
o Credit
o Debit
e Transfer-from-to
@ Objects and messages are contained in set — Order is not
relevant
@ Set is built from binary operator having commutativity and
associativity attributes
o Powerful predefined module for modelling such
(object-oriented) systems

36 /40

Introduction to Maude
Live Demonstration

Model-Checking BANK-ACCOUNT

Atomic predicate debts (A)

debts(A) holds in state S iff balance of account A is negative

System is model-checked for never reaching state where
debts (A) holds for some account A

LTL formula: O0—debts(A)

Since this is an invariant, command search could be used as
well

37 /40

Introduction to Maude

Conclusion

© Conclusion

38 /40

Introduction to Maude
Conclusion

Additional Features

e Highly flexible, user-definable syntax (additional attributes for
correct parsing of mixfix operators)
o Efficient implementation
@ Verification capabilities
o Church-Rosser
e Termination
o Coherence
e Sufficient completeness
e ...
@ Reflection: Represent terms, equations, rules, modules, ... as
terms at meta-level and work with them
@ Reflection is useful to define different rewriting-strategies

39 /40

Introduction to Maude
Conclusion

Sources

@ http://maude.cs.uiuc.edu/

@ M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,
J. Meseguer, C. Talcott. Maude Manual (Version 2.6).
January 2011

T. McCombs. Maude 2.0 Primer. August 2003

@ M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet,
J. Meseguer, J. Quesada. A Maude Tutorial. March 2000

M. Clavel, S. Eker, P. Lincoln, J. Meseguer. Principles of
Maude. In: Electronic Notes in Theoretical Computer Science,
Vol. 4, 1996

40 /40

	Some Facts
	Structure of Maude
	Using Maude
	Live Demonstration
	Conclusion

