
S U P P O R T E D B Y F Ö R D E R U N G D E R W I S S E N S C H A F T L I C H E N
F O R S C H U N G (F W F)

Supervisors:
Professor Wolfgang Schreiner and Professor Elena Kartashova

Department:
Research Institute For Symbolic Computation (RISC) & Institute For
Analysis

A Language for Building Web
Interfaces to Mathematical Software

Rachel Sun

Outline

Introduction - Recap

Preliminary Results & Timeline

Tools

Approach/Implementation

Problems And Future Work

Thesis Demo

Conclusion

A language for Building Web Interfaces to
Mathematical Software

Introduction

Motivation

‣  A generic web application framework that enables Mathematicians to
publish their solutions to the Internet.

‣  The solution can be written in any language or by calling the existing
software.

‣  The framework should not be limited to a specific mathematical domain
problem.

Goal

‣  Design and implement a framework to generate automatically web-based
mathematical applications and deploy the services.

‣  Mathematical programmers only need to provide an interface
description, workflow and necessary programs to the framework.

A language for Building Web Interfaces to
Mathematical Software

A language for Building Web Interfaces to
Mathematical Software

What You HAVE:

ü  Mathematical solution to a
particular domain

 - written in any language

 - using existing software

What You DON’T HAVE:

ü  Specific knowledge how to
write a web application

What You WANT:

ü  Publish it to the Internet
ü  Share your knowledge to a

broader audience

What You DON’T WANT:

ü  To rewrite solution to
adapt to web Technologies

A More Clearer Illustration

2. The server
generates based
on the uploaded
files the
interactive web
application.

1. Client on his
host computer
uploads the
necessary
files for the
framework to
the server.

4. Web users will now be able
to use the software for
performing computation
over a web browser.

3. It then returns either a
link pointing to the web
application or an error
message to the client.

A Simple Workflow

A language for Building Web Interfaces to
Mathematical Software

Prototype Development

Service Testing And Evaluation

System Installation on JKU Server

Architecture Sketch

Literature Reviews

Tools Selection

Finish Implementation

Application Examples

Preliminary Results & Timeline

A language for Building Web Interfaces to
Mathematical Software

First Semester

A language for Building Web Interfaces to
Mathematical Software

Framework Architecture

Prototype Development

Service Testing And Evaluation

System Installation on JKU Server

Architecture Sketch

Literature Reviews

Tools Selection

Finish Implementation

Application Examples

Preliminary Results & Timeline

A language for Building Web Interfaces to
Mathematical Software

Second Semester

First Semester

Tools

A language for Building Web Interfaces to
Mathematical Software

A language for Building Web Interfaces to
Mathematical Software

Second Semester:

ü  Eclipse Juno 4.2

ü  Pydev

ü  Python 2.7

ü  XML

ü  lxml Toolkit

ü  Pyjamas 0.7

ü  CherryPy 3.2.2

ü  JSON-RPC 2.0

ü  Mako Template Engine

ü  PostgreSQL

ü  Psycopg2

First Semester:

ü  Eclipse Indigo 3.7

ü  Pydev

ü  Python 2.7

ü  XML Schema

ü  XML

ü  lxml Toolkit

ü  Pyjamas 0.7

ü  Apache Web Server 2.2.20

ü  JSON-RPC 2.0

Changes

Tools

Pyjamas

‣  Free object oriented client-side web development platform.
‣  Write JavaScript-powered web applications in Python.
‣  Translates Python code to JavaScript and HTML.
‣  Handles all cross-browser issues for the developer.
‣  Necessary for package deployment.

CherryPy

‣  A lightweight server-side web application framework.
‣  Has its own built-in web server to host websites.
‣  Fast handling of user requests.
‣  Applications run on Windows, Linux and Mac OS X.
‣  Provides web contents and handles HTTP requests.

Tools

A language for Building Web Interfaces to
Mathematical Software

Tools

MAKO Template library

‣  Template engine for rendering HTML pages on the server-side.
‣  Very intuitive by using embedded Python code.
‣  Very fast as templates are compiled into Python byte code.

PostgreSQL

‣  Powerful open source object-relational database system.
‣  Runs on all major operating systems.
‣  Used for storing user, application and session data.

Psycopg2

‣  PostgreSQL adapter for the Python programming language.
‣  Fast and secure to connect to the PosgreSQL.

A language for Building Web Interfaces to
Mathematical Software

Approach/Implementation

A language for Building Web Interfaces to
Mathematical Software

Two XML Files

‣  GUI Definitions

‣  Mathematical Server

System-Calls Definition

Two Python Scripts

‣  Client-side Handler

‣  Server-side Handler

✗

✓

✗

✓

Change To

Only one XML File

‣  GUI Definitions

‣  Client handler in Python

Only One Python Script

‣  Server Handler

Change To

Files To Write And Provide

A language for Building Web Interfaces to
Mathematical Software

✓Only one XML File

‣  GUI Definitions

‣  Client handler in Python

Only One Python Script

‣  Server Handler

Mathematical Computation Files

‣  Arbitrary scripts, libraries,

programs etc.

‣  Used to perform actual mathematical

computation.

Files To Write And Provide

A language for Building Web Interfaces to
Mathematical Software

XML File: GUI Definitions

A language for Building Web Interfaces to
Mathematical Software

‣  Describe website graphical user interface (GUI) in XML:

•  How static web application should look like.

•  How panels and widgets are organized and interacted with each
other.

‣  Define what methods are available in a remote service (JSON-RPC).

‣  Widgets that are currently supported:

‣  Panels : Absolute Panel, Caption Panel, Dock Panel, Flow Panel,
 Form Panel, Horizontal Panel, Scroll Panel and

 Vertical Panel.

‣  Widgets : Button, Check Box, File Upload, HTML, Image, Label,
 Radio Button, Text Area, Text Box.

A language for Building Web Interfaces to
Mathematical Software

<Application name="Smith_GNUPlot">
 <title>
 GNU Plotting Web-Application
 </title>
 <description>
 A simple GNU plotting application demo.
 </description>

 <JSONProxy name="server">
 <method>plot</method>
 </JSONProxy>

 <RootPanel>
 <VerticalPanel width="100%" horizontalAlignment="center">
 <TextArea name="input0" width="800px" height="250px"/>
 <Button label="Plot"/>
 <Image name="img"/>
 </VerticalPanel>
 </RootPanel>
</Application>

Example: GNUPlot GUI Definitions

Application unique name
•  To identify an application
•  For checking duplicate applications

Optional elements

Display the plotted image
for the input

Button to plot input data

Input box

Root element

Method provided by the remote server

Reference to the remote object that
"lives" in the server script

 A GNU Plotting Web Application Graphical User Interface (GUI):

A language for Building Web Interfaces to
Mathematical Software

Example: A GNU Plotting GUI

‣  Describe workflow in Python:

•  How to handle user interaction with the GUI objects when events are

fired on the web browser.

•  Acts as an event handler that listens for a 'change’ event on the

widgets.

‣  A client handler function for a widget can be defined in two ways:

•  Inside the CDATA section of a script element of a widget.

 Benefit: Particularly useful when you have only one Button widget.

•  Inside the CDATA section of a script element within root
Application with a function name. Then define the function name in
the listener attribute of a Button widget.

 Benefit: A single handler can be shared among many widgets.

A language for Building Web Interfaces to
Mathematical Software

XML File: Client Handler

 ...

 <Button label="Plot">

 <script>

 <![CDATA[

 img.url = server.plot(input0.text)

]]>

 </script>

 </Button>

 <Image name="img"/>

 ...

Method 1: Client Handler Definition

Code executes (event fires) when the Button Plot is
clicked:

The plot method in the remote server script will be called
with the argument to perform background computation.

Display result (a url that is referencing the plotted

image) of the method to Image widget.

Extract the input text

Listen and subscribe for mouse event by implementing
client handler function that responds to the event.

Handler function must be defined within a CDATA section

Name of the Button

A language for Building Web Interfaces to
Mathematical Software

 <Application name="Smith_GNUPlot">

 ...

<script>

 <![CDATA[

 def handler():
 img.url = server.plot(input0.text)
]]>

 </script>

 <Button label="Plot" listener ="handler"/>

 <Image name="img"/>

 ...

Within the Application root: You can define
as many client handler functions as required.

Handler function must be defined within a CDATA section

Add the name of the handler
function to the attribute

listener of a Button to subscribe
to its occurring event.

Name of the client handler function

Handler function content that
responds to an occurring event.

You can use the same function
name to subscribe to as many

Button widgets as required.

Application root element

Method 2: Client Handler Definition

Display computed result

A language for Building Web Interfaces to
Mathematical Software

‣  A pure Python module.

‣  Describe how to handle user requests on the server by defining
functions.

•  How to call the mathematical software in the background to perform
actual computation.

‣  All methods implemented are exposed as JSON-RPCs.

‣  User can invoke any method defined in the server handler script from
the XML client application.

A language for Building Web Interfaces to
Mathematical Software

Python Script: Server Handler

A language for Building Web Interfaces to
Mathematical Software

def plot(src):

 im_file = "%016x.png" % (time() * 1000000)

 gp_head = """set terminal png;\n""" \
 """set output '%s';\n""" % im_file

 gp_proc = Popen("gnuplot", shell=True, stdin=PIPE,
 stdout=PIPE, stderr=STDOUT)

 stdout = gp_proc.communicate(gp_head + src)[0]

 if gp_proc.returncode:
 raise Exception(stdout)
 return im_file

Example: GNUPlot Server Handler

Generate unique filenames
for output image plots.

Use the function name to expose the
function as JSON-RPC in XML client

Define a header for the
GNUPlot input to write the
result into output file

Create a sub-process
instance of GNUPlot
application

Return the URL of
the plotted image
if no error occurs

User-entered input is the parameter to the function

Interact with GNUPlot process:

•  Send header and input text data
to stdin.

•  Method call returns data from
stdout and stderr.

A language for Building Web Interfaces to
Mathematical Software

‣  XML needs to be transpiled into HTML/JS:

•  Something every browsers should understand.

‣  But first transpile it to an intermediate format: Python/Pyjamas

‣  Finally we transpile the Python/Pyjamas source to HTML/JS.

•  This transpilation will be done by the Pyjamas-Framework: pyjsbuild

GUI
Definition
in XML

Python/
Pyjamas

HTML/JS

GUI Definition (XML) -> HTML/JS

 GUI Definition

...

...

<JSONProxy name="server">
 <method>plot</method>
</JSONProxy>

<RootPanel>
 <VerticalPanel width="100%"
 horizontalAlignment="center">
 <TextArea name="input0" width="800px"
 height="250px"/>
 <Button label="Plot">
 <script>
 <![CDATA[
 img.url = server.plot(input0.text)
]]>
 </script>
 </Button>
 <Image name="img"/>
 </VerticalPanel>
</RootPanel>

...

Intermediate Format

class GNUPlot(object):

 def __init__(self):
 self.server = ui.wrappers.produce('JSONProxy', 'services',
['plot'])
 self._RootPanel_0 = ui.wrappers.produce('RootPanel')
 self._VerticalPanel_0 = ui.wrappers.produce('VerticalPanel',
 HorizontalAlignment=HasAlignment.ALIGN_CENTER, Width='100%')
 self.input0 = ui.wrappers.produce('TextArea', Width='800px',
 Height='250px')
 self._Button_0 = ui.wrappers.produce('Button', html='Plot',
 listener=self._Button_0_listener_)
 self.img = ui.wrappers.produce('Image')

 global server,input0,img
 server = self.server
 input0 = self.input0
 img = self.img

 def onModuleLoad(self):
 self._VerticalPanel_0._widget_.add(self.input0._widget_)
 self._VerticalPanel_0._widget_.add(self._Button_0._widget_)
 self._VerticalPanel_0._widget_.add(self.img._widget_)
 self._RootPanel_0._widget_.add(self._VerticalPanel_0._widget_)

 def _Button_0_listener_(self, sender):
 img.url = server.plot(input0.text)

A language for Building Web Interfaces to
Mathematical Software

Example:

GUI Definition(XML)-> Python/Pyjamas

A language for Building Web Interfaces to
Mathematical Software

Example: A GNU Plotting Web Application

‣  Widgets and panels are implemented as Plugins in the WebMaths framework.

 Benefit: Easy to extend the framework with new widgets or panels by

 implementing Plugins.

‣  Plugins consist of Generators and Wrappers:

•  Generators will generate Python/Pyjamas source code fragments for widgets
and panels.

•  Wrappers will wrap Pyjamas widgets and panels so that the user can access
them in an easier way within the XML client handler script.

 Benefit:

•  User is entirely independent of the official Pyjamas API.

•  In case Pyjamas API changed, WebMaths API shall remain untouched as
regards their content and their validity.

•  User applications shall also remain intact and continuously function
without causing any changes.

A language for Building Web Interfaces to
Mathematical Software

Plugin Ability of Widgets and Panels

‣  Implementation is based on the CherryPy framework.

‣  Is a server itself that hosts mathematical web applications
and provides additional services (e.g. JSON-RPC for the
server handler)

‣  Offers three core features in management of:

•  User/Account

•  Session

•  Application

A language for Building Web Interfaces to
Mathematical Software

Server Application

‣  Provides three types of user accounts:

‣  Administrator
‣  User
‣  Guest

 Administrator Account:

‣  Create new Users
‣  Delete existing Users
‣  Edit profiles of Users by changing their

•  Name

•  Password

•  Roles (eg. Administrator, User, Guest)

 Standard User and Guest Account:

‣  Change name
‣  Change password

A language for Building Web Interfaces to
Mathematical Software

User/Account Management

WebMaths Framework Login Page

Administrator Account:
Create New User Account

Administrator Account:

Delete Existing User Account

Administrator Account:
Edit All Users Profile

Standard User/Guest Account:
Edit User Profile

‣  Every user will get an unique session ID, no matter whether they are
visitors or registered users.

‣  A Session is used to store data for a particular user:

•  Every user has its own session data.

‣  If a web application’s server handler function stored files on the
server (e.g. plot results in the GNUPlot example):

•  These files will be stored in an unique application session

 directory.

•  They will only exist as long as the user’s session ID is valid.

A language for Building Web Interfaces to
Mathematical Software

Session/Login Management

‣  For Administrator and Standard User Account:

•  View a list of all uploaded applications

•  Upload/deploy applications

•  Delete applications

•  Download the package of an application

•  Change the visibility of an application (e.g. private, users,
public)

‣  For all account types (Administrator, Standard User, Guest):

•  View and access to other user-shared applications

A language for Building Web Interfaces to
Mathematical Software

Application Management

User Account:
Upload New Applications

User Account:
Delete Applications

User Account: Download and Change
Visibility of Applications

User/Guest Account:
View A List of Shared Applications

Administrator Account:
Upload New Applications

Administrator Account
Application Management

Problems:

‣  Pyjamas is still in an early development phase.

‣  Pyjamas is not fully compatible with Python language.

‣  Uploaded applications might post a risk to exploit the
server.

Future Work:

‣  More security checks should be performed.

‣  Additional widgets and panels can be added.

‣  Design and define XSD for validation against XML GUI
definitions.

A language for Building Web Interfaces to
Mathematical Software

Problems and Future Work

A language for Building Web Interfaces to
Mathematical Software

WebMaths Framework Demo

‣  There is a need for facilities in mathematical web-based
applications.

‣  A steep learning curve for web application development.

‣  Mathematician can focus solely on writing the mathematical
solutions.

A language for Building Web Interfaces to
Mathematical Software

Conclusion

Thank you!

A language for Building Web Interfaces to
Mathematical Software

