The pi-Calculus (Part 1)

Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.uni-linz.ac.at

The pi-Calculus

- Process calculus developed in continuation of the work on CCS.
 - Robin Milner, Joachim Parrow, David Walker. A Calculus of Mobile Processes. Information and Computation, 100:1–40, 1992.
 - Robin Milner. Elements of Interaction. Turing Award Lecture. Communications of the ACM, 36(1):78-89, January 1993.
 - Robin Milner. The Polyadic π -calculus: a Tutorial. F.L. Bauer et al (eds), Logic and Algebra of Specification, Springer 1993, pp. 203–246.
- Designed to capture mobility.
 - Concurrent systems whose configuration may change.
- Highly influential with many extensions and applications:
 - Abadi and Gordon (1997): Spi-calculus (cryptographic protocols).
 - Shapiro et al (2000): BioSPI (biological processes).
 - Formal modeling of web service architectures (WS-BPEL, ...).
 - Semantics of object-oriented languages.
 -

1. CCS Revisited

2. From CCS to the π -Calculus

3. The π -Calculus

A Reformulation of CCS

- Names $\{a, b, \ldots\}$ and Co-names $\{\bar{a}, \bar{b}, \ldots\}$
 - Complement \bar{a} of a, $\bar{\bar{a}} = a$.
 - Labels $\{a, \bar{a}, b, \bar{b}, \ldots\}$
 - $\vec{a} = a_1, \ldots, a_n$
- Process Identifiers {A, B, ...}
 - Defining Equation $A(\vec{a}) := P_A$
 - \blacksquare P_A is a process expression whose free names are included in \vec{a} .
- Concurrent Process Expressions

$$P ::= A\langle a_1, \ldots, a_n \rangle \mid \sum_{i \in I} \alpha_i.P_i \mid P_1 | P_2 \mid \mathsf{new} \ a \ P$$

- Summation $\sum_{i \in I} \alpha_i . P_i$ with finite indexing set I
 - $P_1 + P_2 + P_3 = \sum_{i \in \{1,2,3\}} P_i$
 - $0 = \sum_{i \in \emptyset} P_i$
- Restriction new a P
 - Name a is bound (not free) in the restriction.

Structural Congruence

- Process Congruence: an equivalence relation \simeq on concurrent process expressions is a *process congruence*, if $P \simeq Q$ implies
 - $\alpha.P + M \simeq \alpha.Q + M$
 - new $aP \simeq \text{new } aQ$
 - $P|R \simeq Q|R, R|P \simeq R|Q$
- Structural Congruence: the structural congruence ≡ is the process congruence defined by the following equations:
 - 1. Change of bound names (alpha-conversion).
 - 2. Reordering of terms in a summation.
 - 3. $P|0 \equiv P, P|Q \equiv Q|P, P|(Q|R) \equiv (P|Q)|R.$
 - 4. new $a(P|Q) \equiv P|\text{new } a(Q)$, if a not free in P. new $a(0) \equiv 0$, new $a(b) \neq 0$ new $a(b) \neq 0$.
 - 5. $A\langle \vec{b}\rangle \equiv \{\vec{b}/\vec{a}\}P_A$, if $A(\vec{a}) := P_A$.

Used in the definition of the possible process reactions.

Standard Forms

- Standard Form: a process expression
 - new \vec{a} $(M_1 \mid \ldots \mid M_n)$
 - \blacksquare Each M_i is a non-empty sum.
 - If n = 0, the standard form is new \vec{a} 0.
 - If \vec{a} is empty, the standard form is $M_1 \mid \ldots \mid M_n$.
- Theorem: Every process is structurally congruent to a standard form.

Reactions

■ Reaction Relation →: set of those transitions that can be inferred from the following rules:

TAU
$$\tau.P + M \to P$$
REACT $(a.P + M) | (\bar{a}.Q + N) \to P | Q$
PAR $\frac{P \to P'}{P|Q \to P'|Q}$
RES $\frac{P \to P'}{\text{new } a \ P \to \text{new } a \ P'}$
STRUCT $\frac{P \to P'}{Q \to Q'}$, if $P \equiv Q$ and $P' \equiv Q'$

The internal reactions within a process.

Labelled Transitions

■ Transition Relation $\stackrel{\alpha}{\rightarrow}$: set of transitions that can be inferred from the following rules (where α is either a label λ or τ):

SUM_t
$$M + \alpha.P + N \xrightarrow{\alpha} P$$

REACT_t $P \xrightarrow{\lambda} P' Q \xrightarrow{\overline{\lambda}} Q'$
 $P|Q \xrightarrow{\tau} P'|Q'$

LPAR_t $P \xrightarrow{\alpha} P'$
 $P|Q \xrightarrow{\alpha} P'|Q$

RES_t $P \xrightarrow{\alpha} P'$
 $P|Q \xrightarrow{\alpha} P|Q'$

RES_t $P \xrightarrow{\alpha} P'$
 $P \xrightarrow{\alpha} P'$
 $P|Q \xrightarrow{\alpha} P'$
 $P|Q \xrightarrow{\alpha} P|Q'$
 $P|Q \xrightarrow{\alpha} P|Q'$
 $P|Q \xrightarrow{\alpha} P|Q'$

The external interactions with other processes.

Relationships

- Structural Congruence Respects Transition: If $P \stackrel{\alpha}{\to} P'$ and $P \equiv Q$, then there exists some Q' such that $Q \stackrel{\alpha}{\to} Q'$ and $P' \equiv Q'$.
 - Structurally congruent process expressions have the same transitions.
- Reaction Agrees with τ -Transition: $P \to P'$ if and only if there exists some P'' such that $P \xrightarrow{\tau} P''$ and $P'' \equiv P'$.
 - \longrightarrow corresponds to the silent transition $\stackrel{\tau}{\rightarrow}$ (modulo congruence).

Theory of strong bisimilarity/equivalence and weak bisimilarity/observation equivalence as already discussed.

1. CCS Revisited

2. From CCS to the π -Calculus

3. The π -Calculus

What is Mobility?

- What entities do move in what space?
 - 1. Processes move in the physical space of computing sites.
 - 2. Processes move in the virtual space of linked processes.
 - 3. Links move in the virtual space of linked processes.
 - 4.
- The π -Calculus is based on option (3).
 - The location of a process in a virtual space of processes is determined by its links to other processes.
 - The neighbors of a process are those processes that it can talk to.
 - Movement of a process can be described by the movement of links.
 - Option (2) can be thus reduced to option (3).
- Other calculi address option (1) more directly.
 - Ambient Calculus (Cardelli and Gordon, 1998): processes move between *ambients* (locations of activities).

The π -calculus describes a logical (not physical) view of mobility.

Mobility in CCS

$$S := \text{new } c (A|C) \mid B$$

- \blacksquare A and C share an internal port c.
- \blacksquare A and B communicate with the external world via ports a and b.

How may the shape of S change by process transitions?

Mobility in CCS

$$A := a.$$
new $d(A|A') + c.A''$

- A may interact with environment at a.
- \blacksquare A then splits into A' and A" sharing an internal port d.
 - A receives a service request at a and generates a deputy A' to which this task is delegated (e.g. a multi-threaded web server).

A component may generate new components.

Mobility in CCS

$$A' := c.0$$

- \blacksquare A' and C may communicate via c.
- A' then dies.
 - \blacksquare A' has performed the assigned task.

A component may disappear.

Limitations of CCS

$$S := \text{new } c (A|C) | B$$

How to achieve the following transition?

It is not possible to create new links between existing components.

An Example of Mobility

- Moving cars connected by wireless links to transmitters.
- Transmitters connected by fixed wires to a central control.
- Wireless connection of a car may be handed over from one transmitter to another.
 - Signal to original transmitter has faded by movement of car.

Virtual movement of links triggered by physical movement of cars.

A π -Calculus Model

System with one car and two transmitters.


```
System :=
```

new $talk_1$, $switch_1$, $gain_1$, $lose_1$, $talk_2$, $switch_2$, $gain_2$, $lose_2$ ($Car\langle talk_1, switch_1 \rangle | Trans\langle talk_1, switch_1, gain_1, lose_1 \rangle | ldtrans\langle gain_2, lose_2 \rangle | Control_1$).

Descriptions of car and transmitters parameterized over current links.

A π -Calculus Model (Contd)

$$Car(talk, switch) := \overline{talk}.Car(talk, switch) + switch(t, s).Car(t, s).$$

$$Trans(talk, switch, gain, lose) := talk. Trans\langle talk, switch, gain, lose \rangle + lose(t, s). \overline{switch}\langle t, s \rangle. Idtrans\langle gain, lose \rangle.$$

Idtrans(gain, lose) := gain(t, s). Trans(t, s, gain, lose).

$$Control_1 := \overline{lose_1} \langle talk_2, switch_2 \rangle. \overline{gain_2} \langle talk_2, switch_2 \rangle. Control_2.$$

 $Control_2 := \overline{lose_2} \langle talk_1, switch_1 \rangle. \overline{gain_1} \langle talk_1, switch_1 \rangle. Control_1.$

Link names may be transmitted as messages; received link names may be used for sending messages.

1. CCS Revisited

2. From CCS to the π -Calculus

3. The π -Calculus

The π -Calculus

- Names: $\{x, y, z, \ldots\}$.
- Action Prefixes: $\pi ::= x(y) \mid \overline{x}\langle y \rangle \mid \tau$.
 - x(y) ... receive y along x.
 - $\overline{x}(y)$... send y along x.
 - τ ... unobservable action.
- π -Calculus Process Expressions:

$$P ::= \sum_{i \in I} \pi_i.P_i \mid P_1|P_2 \mid \text{new } a \mid P \mid P$$

- Summation $\sum_{i \in I} \alpha_i.P_i$ with finite indexing set I.
- Restriction new y and input action x(y) both bind name y.
- Replication !P instead of process identifiers and defining equations.

Monadic version of calculus (each message contains exactly one name).

Illustrating Reactions

$$P := \text{new } z \ ((\bar{x}\langle y \rangle + z(w).\bar{w}\langle y \rangle) \mid x(u).\bar{u}\langle v \rangle \mid \bar{x}\langle z \rangle).$$

- Two possible reactions $P \to P_1$ and $P \to P_2$ $P_1 = \text{new } z \ (0 \mid \bar{y}\langle v \rangle \mid \bar{x}\langle z \rangle).$ $P_2 = \text{new } z \ ((\bar{x}\langle y \rangle + z(w).\bar{w}\langle y \rangle) \mid \bar{z}\langle v \rangle \mid 0).$
- One possible reaction $P_2 \rightarrow P_3$ $P_3 = \text{new } z \ (\bar{v} \langle v \rangle \mid 0 \mid 0).$

No other reactions are possible.

Structural Congruence

- Process Congruence: an equivalence relation \simeq on π -calculus process expressions is a *process congruence*, if $P \simeq Q$ implies
 - $\pi.P + M \simeq \pi.Q + M$
 - new $x P \simeq \text{new } x Q$
 - $P|R \simeq Q|R, R|P \simeq R|Q$
 - $|P \simeq |Q|$
- Structural Congruence: the structural congruence ≡ is the process congruence defined by the following equations:
 - 1. Change of bound names (alpha-conversion).
 - 2. Reordering of terms in a summation.
 - 3. $P|0 \equiv P, P|Q \equiv Q|P, P|(Q|R) \equiv (P|Q)|R.$
 - 4. new $x(P|Q) \equiv P|\text{new } x Q$, if x not free in P. new $x 0 \equiv 0$, new $x y P \equiv \text{new } y x P$.
 - 5. $!P \equiv P \mid !P$

Alpha conversions can also occur for names bound by an input action; the replication operator can generate arbitrarily many instances of a process.

Standard Forms

■ Standard Form: a process expression

new
$$\vec{a}$$
 $(M_1 \mid \ldots \mid M_m \mid !Q_1 \mid \ldots \mid !Q_n)$

- **Each** M_i is a non-empty sum, each Q_n is in standard form.
- If m = n = 0, the standard form is new \vec{a} 0.
- If \vec{a} is empty, the standard form is $M_1 \mid \ldots \mid M_m \mid Q_1 \mid \ldots \mid Q_n$.
- Theorem: Every process is structurally congruent to a standard form.

Reactions

■ Reaction Relation →: set of those transitions that can be inferred from the following rules:

TAU
$$\tau.P + M \to P$$
REACT $(x(y).P + M)|(\bar{x}\langle z\rangle.Q + N) \to \{z/y\}P|Q$
PAR $\frac{P \to P'}{P|Q \to P'|Q}$
RES $\frac{P \to P'}{\text{new } x \ P \to \text{new } x \ P'}$
STRUCT $\frac{P \to P'}{Q \to Q'}$, if $P \equiv Q$ and $P' \equiv Q'$

The internal reactions within a process (the external interactions will be formalized later).

The Polyadic π -Calculus

Allow action prefixes with multiple messages.

$$x(y_1 \ldots y_n).P$$
 and $\bar{x}\langle z_1, \ldots, z_n \rangle.Q$

Obvious encoding in monadic π -calculus:

$$x(y_1).....x(y_n).P$$
 and $\bar{x}\langle z_1\rangle.....\bar{x}\langle z_n\rangle.Q$

- Obvious encoding is wrong:
 - $x(y_1, y_2).P \mid \bar{x}(z_1, z_2).0 \mid \bar{x}(z_1', z_2').0$ should only have transitions to $\{z_1/y_1, z_2/y_2\}P$ and $\{z_1'/y_1, z_2'/y_2\}P$
 - $x(y_1).x(y_2).P \mid \overline{x}\langle z_1\rangle.\overline{x}\langle z_2\rangle.0 \mid \overline{x}\langle z_1'\rangle.\overline{x}\langle z_2'\rangle.0$ also has transitions to $\{z_1/y_1, z_1'/y_2\}P$ and $\{z_1'/y_1, z_1/y_2\}P$.
- Correct encoding in monadic π -calculus:

$$x(w).w(y_1).\cdots.w(y_n).P$$
 and new $w(\bar{x}\langle w\rangle.\bar{w}\langle z_1\rangle.\cdots.\bar{w}\langle z_n\rangle.Q)$

Interference on channel x is avoided by sending a fresh name w along x and then sending the components z_i one by one along w.

We can use the polyadic π -calculus in applications but use the monadic π -calculus as the formal basis.

Recursive Definitions

Use recursively defined process identifiers.

Recursive definition
$$A(\vec{x}) := Q_A$$
 whose scope is process $P = \dots A(\vec{y}) \dots A(\vec{z}) \dots$

- Translated using replication as follows:
 - Invent a new name, say a, to stand for A.
 - Translate every process R to a process \hat{R} by replacing every call $A(\vec{w})$ by the output action $\bar{a}\langle \vec{w} \rangle$.
 - Replace the definition of A and P by new $a(\widehat{P} \mid |a(\vec{x}).\widehat{Q}_{\Delta})$
 - Can be easily generalized to multiple recursive definitions.
- Example: $S(x) := \overline{c}(x).S(x)$ and R := c(x).R in S(y)|R
 - new $s r (\bar{s}\langle y \rangle | \bar{r} | !s(x).\bar{c}\langle x \rangle.\bar{s}\langle x \rangle | !r.c(x).\bar{r})$

We can also use recursive process definitions in applications.