
Formal Methods in Software Development
Exercise 5 (December 6)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

November 5, 2010

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,
• the deliverables requested in the description of the exercise,
• a (nicely formatted) copy of the ProofNavigator file used in the exercise,
• for each proof of a formula F, a readable screenshot of the RISC ProofNavigator

after executing the command proof F,
• an explicit statement whether the proof succeeded,
• optionally any explanations or comments you would like to make;

2. the RISC ProofNavigator (.pn) file(s) used in the exercise;

3. the proof directories generated by the RISC ProofNavigator.

1



Exercise 5: Insertion Sort Core

Let a be an integer array of length greater than n such that a is sorted in ascending order in range
0 . . . n − 1. We consider the problem of inserting a[n] into that position of a such that a is sorted
in range 0 . . . n.

1. (20P) Give a formal specification of the problem by a pair of pre- and post-condition.
Please note that the post-condition must not only state that the updated array is sorted; it
also must describe the relationship of the elements of the updated array to the elements
of the original array (i.e. that there exists a suitable position p where the value has been
inserted, that all elements before p have remained unchanged and that all elements after p
have been shifted by one position). Please also note that the only program variables that
appear in the problem statement are a and n.

2. (10P) The problem is expected to be solved by the following piece of code (the core of the
insertion sort algorithm):

i = n;
t = a[i];
while (i > 0 && a[i-1] > t)
{
a[i] = a[i-1];
i = i-1;

}
a[i] = t;

Assume that you are given a suitable loop invariant I and termination term T . Using these,
derive those conditions that have to pe proved to verify the total correctness of the code
(use the notation P[e/x] to denote phrase P with variable x substituted by term e).

3. (20P) Give a suitable definition of I and T . The invariant must apparently express the
information available about all positions that have already been processed (i.e. the posi-
tions greater than i) as well as the information about all positions that have not yet been
processed (i.e. the positions less than or equal i). Validate I and T by constructing vari-
able traces for at least three example inputs (including one where a[n] is inserted at the
beginning of the array and one where it stays where it is).

4. (10P) Formalize the proof obligations as a theory of the RISC ProofNavigator.

5. (40P) Prove the obligations with the RISC ProofNavigator.

2


