Specifying Properties of Concurrent Systems

Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.uni-linz.ac.at

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

1/19

Computation Trees versus System Runs

Figure 3.1 Computation trees

Edmund Clarke et al: "Model Checking". 1999.

Motivation

We need a language for specifying system properties.

- A system S is a pair $\langle I, R \rangle$.
 - Initial states *I*, transition relation *R*.
 - More intuitive: reachability graph.
 - \blacksquare Starting from an initial state s_0 , the system runs evolve.
- Consider the reachability graph as an infinite computation tree.
 - Different tree nodes may denote occurrences of the same state.
 - Each occurrence of a state has a unique predecessor in the tree.
 - Every path in this tree is infinite.
 - Every finite run $s_0 \rightarrow \ldots \rightarrow s_n$ is extended to an infinite run $s_0 \rightarrow \ldots \rightarrow s_n \rightarrow s_n \rightarrow s_n \rightarrow \ldots$
- Or simply consider the graph as a set of system runs.
 - Same state may occur multiple times (in one or in different runs).

Temporal logic describes such trees respectively sets of system runs.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 2/19

State Formula

Temporal logic is based on classical logic.

- A state formula F is evaluated on a state s.
 - Any predicate logic formula is a state formula: $p(x), \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1, \forall x : F, \exists x : F.$
 - In propositional temporal logic only propositional logic formulas are state formulas (no quantification):

$$p, \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1.$$

- Semantics: $s \models F$ ("F holds in state s").
 - **Example:** semantics of conjunction.
 - $(s \models F_0 \land F_1) :\Leftrightarrow (s \models F_0) \land (s \models F_1).$
 - " $F_0 \wedge F_1$ holds in s if and only if F_0 holds in s and F_1 holds in s".

Classical logic reasons on individual states.

http://www.risc.uni-linz.ac.at Wolfgang Schreiner http://www.risc.uni-linz.ac.at 4/19 Wolfgang Schreiner

Temporal Logic

Extension of classical logic to reason about multiple states.

- Temporal logic is an instance of modal logic.
 - Logic of "multiple worlds (situations)" that are in some way related.
 - Relationship may e.g. be a temporal one.
 - Amir Pnueli, 1977: temporal logic is suited to system specifications.
 - Many variants, two fundamental classes.
- Branching Time Logic
 - Semantics defined over computation trees.

At each moment, there are multiple possible futures.

Prominent variant: CTL.

Computation tree logic; a propositional branching time logic.

- Linear Time Logic
 - Semantics defined over sets of system runs.

At each moment, there is only one possible future.

Prominent variant: PLTL.

A propositional linear time logic.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

5/19

Formulas

All formulas are path formulas.

- Every formula is evaluated on a path p.
 - \blacksquare Also every state formula f of classical logic (see below).
 - Let F and G denote formulas.
 - Then also the following are formulas:

X F ("next time F"), often written $\bigcirc F$,

G F ("always F"), often written $\Box F$,

F F ("eventually F"), often written $\Diamond F$,

F **U** G ("F until G").

- Semantics: $p \models P$ ("P holds in path p").
 - $p^i := \langle p_i, p_{i+1}, \ldots \rangle.$

$$p \models f :\Leftrightarrow p_0 \models f$$
.

 $p \models \mathbf{X} F :\Leftrightarrow p^1 \models F.$

 $p \models \mathbf{G} F :\Leftrightarrow \forall i \in \mathbb{N} : p^i \models F.$

 $p \models \mathbf{F} F :\Leftrightarrow \exists i \in \mathbb{N} : p^i \models F.$

 $p \models F \cup G : \Leftrightarrow \exists i \in \mathbb{N} : p^i \models G \land \forall j \in \mathbb{N}_i : p^j \models F.$

Linear Time Logic (LTL)

We use temporal logic to specify a system property P.

- Core question: $S \models P$ ("P holds in system S").
 - System $S = \langle I, R \rangle$, temporal logic formula P.
- Linear time logic:
 - $S \models P :\Leftrightarrow r \models P$, for every run r of S.
 - Property P must be evaluated on every run r of S.
 - Given a computation tree with root s_0 , P is evaluated on every path of that tree originating in s_0 .
 - If *P* holds for every path, *P* holds on *S*.

LTL formulas are evaluated on system runs.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

6/19

Formulas

Thomas Kropf: "Introduction to Formal Hardware Verification", 1999

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 7/19 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 8/19

Frequently Used LTL Patterns

In practice, most temporal formulas are instances of particular patterns.

Pattern	Pronounced	Name
$\Box F$	always <i>F</i>	invariance
<i>◇F</i>	eventually F	guarantee
$\Box \Diamond F$	F holds infinitely often	recurrence
$\Diamond\Box F$	eventually F holds permanently	stability
$\Box(F\Rightarrow \Diamond G)$	always, if F holds, then	response
	eventually G holds	
$\Box(F\Rightarrow (G\ \mathbf{U}\ H))$	always, if F holds, then	precedence
	G holds until H holds	

Typically, there are at most two levels of nesting of temporal operators.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

9/19

Classes of System Properties

There exists two important classes of system properties.

- Safety Properties:
 - A safety property is a property such that, if it is violated by a run, it is already violated by some finite prefix of the run.
 - This finite prefix cannot be extended in any way to a complete run satisfying the property.
 - **Example**: $\Box F$.
 - The violating run $F \to F \to \neg F \to \dots$ has the prefix $F \to F \to \neg F$ that cannot be extended in any way to a run satisfying $\Box F$.
- Liveness Properties:
 - A liveness property is a property such that every finite prefix can be extended to a complete run satisfying this property.
 - Only a complete run itself can violate that property.
 - Example: $\Diamond F$.
 - Any finite prefix p can be extended to a run $p \rightarrow F \rightarrow ...$ which satisfies $\Diamond F$.

Examples

- Mutual exclusion: $\Box \neg (pc_1 = C \land pc_2 = C)$.
 - Alternatively: $\neg \diamondsuit (pc_1 = C \land pc_2 = C)$.
 - Never both components are simultaneously in the critical region.
- No starvation: $\forall i : \Box(pc_i = W \Rightarrow \Diamond pc_i = R)$.
 - \blacksquare Always, if component i waits for a response, it eventually receives it.
- No deadlock: $\Box \neg \forall i : pc_i = W$.
 - \blacksquare Never all components are simultaneously in a wait state W.
- Precedence: $\forall i : \Box(pc_i \neq C \Rightarrow (pc_i \neq C \cup lock = i))$.
 - Always, if component *i* is out of the critical region, it stays out until it receives the shared lock variable (which it eventually does).
- Partial correctness: $\Box(pc = L \Rightarrow C)$.
 - Always if the program reaches line L, the condition C holds.
- Termination: $\forall i : \Diamond(pc_i = T)$.
 - Every component eventually terminates.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 10/19

System Properties

Not every system property is itself a safety property or a liveness property.

- Example: $P : \Leftrightarrow (\Box A) \land (\Diamond B)$
 - Conjunction of a safety property and a liveness property.
- Take the run $[A, \neg B] \rightarrow [A, \neg B] \rightarrow [A, \neg B] \rightarrow \dots$ violating P.
 - Any prefix $[A, \neg B] \to \ldots \to [A, \neg B]$ of this run can be extended to a run $[A, \neg B] \to \ldots \to [A, \neg B] \to [A, B] \to [A, B] \to \ldots$ satisfying P.
 - Thus *P* is not a safety property.
- Take the finite prefix $[\neg A, B]$.
 - This prefix cannot be extended in any way to a run satisfying *P*.
 - Thus *P* is not a liveness property.

So is the distinction "safety" versus "liveness" really useful?.

System Properties

The real importance of the distinction is stated by the following theorem.

Theorem:

Every system property P is a conjunction $S \wedge L$ of some safety property S and some liveness property L.

- If L is "true", then P itself is a safety property.
- If S is "true", then P itself is a liveness property.

Consequence:

- \blacksquare Assume we can decompose P into appropriate S and L.
- For proving $M \models P$, it then suffices to perform two proofs:
 - A safety proof: $M \models S$.
 - A liveness proof: $M \models L$.
- Different strategies for proving safety and liveness properties.

For verification, it is important to decompose a system property in its "safety part" and its "liveness part".

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

13/19

Proving Liveness

$$\begin{array}{lll} \mathbf{var} \ x := 0, y := 0 \\ \mathbf{loop} & || & \mathbf{loop} \\ x := x + 1 & y := y + 1 \end{array}$$

 $State = \mathbb{N} \times \mathbb{N}; Label = \{p, q\}.$ $I(x, y) :\Leftrightarrow x = 0 \land y = 0.$ $R(I, \langle x, y \rangle, \langle x', y' \rangle) :\Leftrightarrow$

$$(I = p \land x' = x + 1 \land y' = y) \lor (I = q \land x' = x \land y' = y + 1).$$

Prove $\langle I, R \rangle \models \Diamond x = 1$.

- $[x = 0, y = 0] \rightarrow [x = 0, y = 1] \rightarrow [x = 0, y = 2] \rightarrow \dots$
- This run violates (as the only one) $\Diamond x = 1$.
- Thus the system as a whole does not satisfy $\Diamond x = 1$.

For proving liveness properties, "unfair" runs have to be ruled out.

Proving Invariance

We only consider a special case of a safety property.

- Prove $M \models \Box F$.
 - F is a state formula (a formula without temporal operator).
 - Prove that F is an invariant of system M.
- $M = \langle I, R \rangle.$
 - $I(s):\Leftrightarrow \dots$
 - $R(s,s') : \Leftrightarrow R_0(s,s') \vee R_1(s,s') \vee \ldots \vee R_{n-1}(s,s').$
- Induction Proof.
 - $\forall s: I(s) \Rightarrow F(s).$
 - Proof that *F* holds in every initial state.
 - $\forall s, s' : F(s) \land R(s, s') \Rightarrow F(s').$
 - Proof that each transition preserves *F*.
 - Reduces to a number of subproofs:

$$F(s) \wedge R_0(s,s') \Rightarrow F(s')$$

$$F(s) \wedge R_{n-1}(s,s') \Rightarrow F(s')$$

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

14/19

Weak Fairness

- Weak Fairness
 - A run $s_0 \xrightarrow{l_0} s_1 \xrightarrow{l_1} s_2 \xrightarrow{l_2} \dots$ is weakly fair to a transition l, if
 - if transition *I* is eventually permanently enabled in the run,
 - then transition *I* is executed infinitely often in the run.

$$(\exists i : \forall j \geq i : Enabled_R(I, s_j)) \Rightarrow (\forall i : \exists j \geq i : I_j = I).$$

- The run in the previous example was not weakly fair to transition p.
- LTL formulas may explicitly specify weak fairness constraints.
 - Let E_l denote the enabling condition of transition l.
 - Let X_l denote the predicate "transition l is executed".
 - Define $WF_I :\Leftrightarrow (\Diamond \Box E_I) \Rightarrow (\Box \Diamond X_I)$.

If I is eventually enabled forever, it is executed infinitely often.

Prove $\langle I, S \rangle \models (WF_I \Rightarrow P)$.

Property P is only proved for runs that are weakly fair to I.

A (relatively) weak requirement to the fairness of a system.

Strong Fairness

- Strong Fairness
 - A run $s_0 \xrightarrow{l_0} s_1 \xrightarrow{l_1} s_2 \xrightarrow{l_2} \dots$ is strongly fair to a transition l, if
 - if / is infinitely often enabled in the run,
 - then / is also infinitely often executed the run.

$$(\forall i : \exists j \geq i : Enabled_R(I, s_j)) \Rightarrow (\forall i : \exists j \geq i : I_j = I).$$

- If r is weakly fair to I, it is also strongly fair to I (but not vice versa).
- LTL formulas may explicitly specify strong fairness constraints.
 - Let E_l denote the enabling condition of transition l.
 - Let X_I denote the predicate "transition I is executed".
 - Define $SF_I : \Leftrightarrow (\Box \Diamond E_I) \Rightarrow (\Box \Diamond X_I)$.

If I is enabled infinitely often, it is executed infinitely often.

Prove $\langle I, S \rangle \models (SF_I \Rightarrow P)$.

Property P is only proved for runs that are strongly fair to I.

A much stronger requirement to the fairness of a system.

17/19 Wolfgang Schreiner http://www.risc.uni-linz.ac.at

Example


```
var x=0
                                        loop
                                            a: x := -x
                                            b : choose x := 0 \mid | x := 1
    State := \{a, b\} \times \mathbb{Z}; Label = \{A, B_0, B_1\}.
    I(p,x):\Leftrightarrow p=a\wedge x=0.
    R(I,\langle p,x\rangle,\langle p',x'\rangle):\Leftrightarrow
         (I = A \wedge (p = a \wedge p' = b \wedge x' = -x)) \vee
         (I = B_0 \wedge (p = b \wedge p' = a \wedge x' = 0)) \vee
         (I = B_1 \wedge (p = b \wedge p' = a \wedge x' = 1)).
■ Prove: \langle I, R \rangle \models \Diamond x = 1.
         ■ Take violating run [a, 0] \xrightarrow{A} [b, 0] \xrightarrow{B_0} [a, 0] \xrightarrow{A} [b, 0] \xrightarrow{B_0} [a, 0] \xrightarrow{A} \dots
```

- Enabled $B_1(p,x) : \Leftrightarrow p = b$.
- Run is weakly fair but not strongly fair to B_1 .

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 18/19