
Specifying Properties of Concurrent Systems

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.uni-linz.ac.at

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 1/19

Motivation

We need a language for specifying system properties.

s1

s0

s2

A system S is a pair 〈I ,R〉.

Initial states I , transition relation R .
More intuitive: reachability graph.

Starting from an initial state s0, the system runs evolve.

Consider the reachability graph as an infinite computation tree.
Different tree nodes may denote occurrences of the same state.

Each occurrence of a state has a unique predecessor in the tree.

Every path in this tree is infinite.

Every finite run s0 → . . . → sn is extended to an infinite run
s0 → . . . → sn → sn → sn → . . .

Or simply consider the graph as a set of system runs.

Same state may occur multiple times (in one or in different runs).

Temporal logic describes such trees respectively sets of system runs.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 2/19

Computation Trees versus System Runs

Edmund Clarke et al: “Model Checking”, 1999.

Set of system runs:
[a, b] → c → c → . . .

[a, b] → [b, c] → c → . . .

[a, b] → [b, c] → [a, b] → . . .

[a, b] → [b, c] → [a, b] → . . .

. . .

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 3/19

State Formula

Temporal logic is based on classical logic.

A state formula F is evaluated on a state s.

Any predicate logic formula is a state formula:
p(x),¬F , F0 ∧ F1, F0 ∨ F1, F0 ⇒ F1, F0 ⇔ F1, ∀x : F , ∃x : F .
In propositional temporal logic only propositional logic formulas are
state formulas (no quantification):
p,¬F , F0 ∧ F1, F0 ∨ F1, F0 ⇒ F1, F0 ⇔ F1.

Semantics: s |= F (“F holds in state s”).
Example: semantics of conjunction.

(s |= F0 ∧ F1) :⇔ (s |= F0) ∧ (s |= F1).
“F0 ∧ F1 holds in s if and only if F0 holds in s and F1 holds in s”.

Classical logic reasons on individual states.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 4/19

Temporal Logic

Extension of classical logic to reason about multiple states.

Temporal logic is an instance of modal logic.
Logic of “multiple worlds (situations)” that are in some way related.
Relationship may e.g. be a temporal one.
Amir Pnueli, 1977: temporal logic is suited to system specifications.
Many variants, two fundamental classes.

Branching Time Logic
Semantics defined over computation trees.

At each moment, there are multiple possible futures.

Prominent variant: CTL.
Computation tree logic; a propositional branching time logic.

Linear Time Logic
Semantics defined over sets of system runs.

At each moment, there is only one possible future.

Prominent variant: PLTL.
A propositional linear time logic.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 5/19

Linear Time Logic (LTL)

We use temporal logic to specify a system property P .

Core question: S |= P (“P holds in system S”).

System S = 〈I , R〉, temporal logic formula P .

Linear time logic:

S |= P :⇔ r |= P , for every run r of S .
Property P must be evaluated on every run r of S .
Given a computation tree with root s0, P is evaluated on every path
of that tree originating in s0.

If P holds for every path, P holds on S .

LTL formulas are evaluated on system runs.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 6/19

Formulas

All formulas are path formulas.

Every formula is evaluated on a path p.
Also every state formula f of classical logic (see below).
Let F and G denote formulas.
Then also the following are formulas:

X F (“next time F”), often written #F ,
G F (“always F”), often written 2F ,
F F (“eventually F”), often written 3F ,
F U G (“F until G”).

Semantics: p |= P (“P holds in path p”).
pi := 〈pi , pi+1, . . .〉.

p |= f :⇔ p0 |= f .
p |= X F :⇔ p1 |= F .
p |= G F :⇔ ∀i ∈ N : pi |= F .
p |= F F :⇔ ∃i ∈ N : pi |= F .
p |= F U G :⇔ ∃i ∈ N : pi |= G ∧ ∀j ∈ Ni : pj |= F .

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 7/19

Formulas

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 8/19

Frequently Used LTL Patterns

In practice, most temporal formulas are instances of particular patterns.

Pattern Pronounced Name

2F always F invariance
3F eventually F guarantee
23F F holds infinitely often recurrence
32F eventually F holds permanently stability
2(F ⇒ 3G) always, if F holds, then response

eventually G holds
2(F ⇒ (G U H)) always, if F holds, then precedence

G holds until H holds

Typically, there are at most two levels of nesting of temporal operators.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 9/19

Examples

Mutual exclusion: 2¬(pc1 = C ∧ pc2 = C).

Alternatively: ¬3(pc1 = C ∧ pc2 = C).
Never both components are simultaneously in the critical region.

No starvation: ∀i : 2(pc i = W ⇒ 3pc i = R).

Always, if component i waits for a response, it eventually receives it.

No deadlock: 2¬∀i : pc i = W .

Never all components are simultaneously in a wait state W .

Precedence: ∀i : 2(pc i 6= C ⇒ (pc i 6= C U lock = i)).

Always, if component i is out of the critical region, it stays out until it
receives the shared lock variable (which it eventually does).

Partial correctness: 2(pc = L ⇒ C).

Always if the program reaches line L, the condition C holds.

Termination: ∀i : 3(pc i = T).

Every component eventually terminates.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 10/19

Classes of System Properties

There exists two important classes of system properties.

Safety Properties:
A safety property is a property such that, if it is violated by a run, it
is already violated by some finite prefix of the run.

This finite prefix cannot be extended in any way to a complete run
satisfying the property.

Example: 2F .
The violating run F → F → ¬F → . . . has the prefix F → F → ¬F

that cannot be extended in any way to a run satisfying 2F .

Liveness Properties:
A liveness property is a property such that every finite prefix can be
extended to a complete run satisfying this property.

Only a complete run itself can violate that property.

Example: 3F .
Any finite prefix p can be extended to a run p → F → . . . which
satisfies 3F .

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 11/19

System Properties

Not every system property is itself a safety property or a liveness property.

Example: P :⇔ (2A) ∧ (3B)

Conjunction of a safety property and a liveness property.

Take the run [A,¬B] → [A,¬B] → [A,¬B] → . . . violating P .

Any prefix [A,¬B] → . . . → [A,¬B] of this run can be extended to a
run [A,¬B] → . . . → [A,¬B] → [A, B] → [A, B] → . . . satisfying P .
Thus P is not a safety property.

Take the finite prefix [¬A,B].

This prefix cannot be extended in any way to a run satisfying P .
Thus P is not a liveness property.

So is the distinction “safety” versus “liveness” really useful?.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 12/19

System Properties

The real importance of the distinction is stated by the following theorem.

Theorem:

Every system property P is a conjunction S ∧ L of some safety
property S and some liveness property L.

If L is “true”, then P itself is a safety property.
If S is “true”, then P itself is a liveness property.

Consequence:

Assume we can decompose P into appropriate S and L.
For proving M |= P , it then suffices to perform two proofs:

A safety proof: M |= S .
A liveness proof: M |= L.

Different strategies for proving safety and liveness properties.

For verification, it is important to decompose a system property in its
“safety part” and its “liveness part”.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 13/19

Proving Invariance

We only consider a special case of a safety property.

Prove M |= 2F .
F is a state formula (a formula without temporal operator).
Prove that F is an invariant of system M .

M = 〈I ,R〉.
I (s) :⇔ . . .

R(s, s ′) :⇔ R0(s, s
′) ∨ R1(s, s

′) ∨ . . . ∨ Rn−1(s, s
′).

Induction Proof.
∀s : I (s) ⇒ F (s).

Proof that F holds in every initial state.

∀s, s ′ : F (s) ∧ R(s, s ′) ⇒ F (s ′).
Proof that each transition preserves F .
Reduces to a number of subproofs:

F (s) ∧ R0(s, s
′) ⇒ F (s ′)

. . .

F (s) ∧ Rn−1(s, s
′) ⇒ F (s ′)

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 14/19

Proving Liveness

var x := 0, y := 0
loop

x := x + 1
|| loop

y := y + 1

State = N × N; Label = {p, q}.
I (x , y) :⇔ x = 0 ∧ y = 0.

R(l , 〈x , y〉, 〈x ′
, y ′〉) :⇔

(l = p ∧ x ′ = x + 1 ∧ y ′ = y) ∨ (l = q ∧ x ′ = x ∧ y ′ = y + 1).

Prove 〈I ,R〉 |= 3x = 1.

[x = 0, y = 0] → [x = 0, y = 1] → [x = 0, y = 2] → . . .

This run violates (as the only one) 3x = 1.
Thus the system as a whole does not satisfy 3x = 1.

For proving liveness properties, “unfair” runs have to be ruled out.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 15/19

Weak Fairness

Weak Fairness

A run s0
l0→ s1

l1→ s2
l2→ . . . is weakly fair to a transition l , if

if transition l is eventually permanently enabled in the run,

then transition l is executed infinitely often in the run.

(∃i : ∀j ≥ i : EnabledR(l , sj)) ⇒ (∀i : ∃j ≥ i : lj = l).

The run in the previous example was not weakly fair to transition p.

LTL formulas may explicitly specify weak fairness constraints.

Let El denote the enabling condition of transition l .
Let Xl denote the predicate “transition l is executed”.
Define WF l :⇔ (32El) ⇒ (23Xl).

If l is eventually enabled forever, it is executed infinitely often.

Prove 〈I , S〉 |= (WF l ⇒ P).

Property P is only proved for runs that are weakly fair to l .

A (relatively) weak requirement to the fairness of a system.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 16/19

Strong Fairness

Strong Fairness

A run s0
l0→ s1

l1→ s2
l2→ . . . is strongly fair to a transition l , if

if l is infinitely often enabled in the run,

then l is also infinitely often executed the run.

(∀i : ∃j ≥ i : EnabledR(l , sj)) ⇒ (∀i : ∃j ≥ i : lj = l).

If r is weakly fair to l , it is also strongly fair to l (but not vice versa).

LTL formulas may explicitly specify strong fairness constraints.

Let El denote the enabling condition of transition l .
Let Xl denote the predicate “transition l is executed”.
Define SF l :⇔ (23El) ⇒ (23Xl).

If l is enabled infinitely often, it is executed infinitely often.

Prove 〈I , S〉 |= (SF l ⇒ P).

Property P is only proved for runs that are strongly fair to l .

A much stronger requirement to the fairness of a system.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 17/19

Example

var x=0
loop

a : x := −x

b : choose x := 0 [] x := 1

State := {a, b} × Z;Label = {A, B0, B1}.
I (p, x) :⇔ p = a ∧ x = 0.
R(l , 〈p, x〉, 〈p′

, x ′〉) :⇔
(l = A ∧ (p = a ∧ p′ = b ∧ x ′ = −x)) ∨
(l = B0 ∧ (p = b ∧ p′ = a ∧ x ′ = 0)) ∨
(l = B1 ∧ (p = b ∧ p′ = a ∧ x ′ = 1)).

Prove: 〈I ,R〉 |= 3x = 1.

Take violating run [a, 0]
A
→ [b, 0]

B0→ [a, 0]
A
→ [b, 0]

B0→ [a, 0]
A
→ . . .

EnabledB1(p, x) :⇔ p = b.
Run is weakly fair but not strongly fair to B1.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 18/19

	The Basics of Temporal Logic

