
Introduction to

Parallel and Distributed Computing

Exercise 3 (June 11)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

April 28, 2008

The result is to be submitted by the deadline stated above via the Moodle
interface as a .zip or .tgz file which contains

• a PDF file with

– a cover page with the title of the course, your name, Matrikelnummer,
and email-address,

– the source code of the sequential program,

– the demonstration of a sample solution of the program,

– the source code of the parallel program,

– the demonstration of a sample solution of the program,

– a benchmark of the sequential and of the parallel program in the style
of Exercise 2.

• the source (.c/.java) files of the sequential program and of the parallel
program.

Exercise 3: Multi-Threaded Parallelization

The goal of this exercise is to develop a multi-threaded parallel version of the
Gaussian Elimination program developed in Exercise 2 using

• either the programming language C/C++ with the POSIX Thread and
Socket API,

• or the programming language Java with the standard API for multithread-
ing and socket communication.

1



First, take the sequential solution (possibly translated to Java) and benchmark
it with appropriate values for N (in the case of Java, adapt the constant in
smult to give reasonable timings).

Next, develop a multi-threaded version of the program that can be started with
a command-line parameter T denoting the number of threads that shall be used
for parallel execution. Benchmark this program as in Exercise 2 and report the
corresponding results.

Hint: for benchmarking Java programs, you may use the function

System.currentTimeMillis()

which returns the current wall clock time in milliseconds.

Alternative Version of Exercise (20% Bonus) Write the program such
that it can be started

1. either with a command line parameter -server; in this case the program
is executed in server mode in which it repeatedly constructs a random
equation system and then waits (on some designated port) for the request
of a client to solve the system with a particular number of threads,

2. or with a command line parameter -client T ; in this case, the program
is started as a client that contacts the server on the designated port, sends
the parameter T to the server, and waits for an acknowledgement that the
execution has terminated.

Both server and clients may be run on the Altix machine.

If you choose this version, please start a server process and repeatedly bench-
mark the time for the execution of the client from the point where it sends T
to server until the time it receives the answer (rather than benchmarking the
execution of the server).

2


