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The result is to be submitted by the deadline stated above via the Moodle
interface as a .zip or .tgz file which contains

• a PDF file with

– a cover page with the title of the course, your name, Matrikelnummer,
and email-address,

– the source code of the original program,

– the demonstration of a sample solution of the program,

– the output of the parellizing compilation of this source with an ex-
planation of this output and the inhibitors of parallelism (if any),

– the source code of the modified program,

– the demonstration of a sample solution of the program,

– the output of the parellizing compilation of this source with an ex-
planation of this output (comparing it with the previous one),

– a benchmark of the sequential and of the parallel program in the style
of Exercise 1.

• the source (.c/.f) files of the original program and the modified program.

Exercise 2: Automatic Parallelization

Gaussian Elimination is a well-known algorithm for solving a linear system
Ax = b of some dimension n (i.e. we are given a matrix A of size n × n and a
vector b of length n and we want to find that vector x of length n such that the
equation holds).

The algorithm consists of two steps:
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1. The system is converted to an upper-triangular system Tx = e (i.e. all
coefficients below the main diagonal of T are zero) which has the same
solution(s) as the original system.

2. The new system Tx = e is solved by backward substition (we determine
the solution xn−1 = en−1, and substitute the solution in the given system
which produces a new upper-triangular system of dimension n− 1 which
can be solved in the same way).

Details about the algorithm are given in the file GaussianElimination.PDF in
the “Restricted Area” of the course site (Figure 9-13 describes triangulation,
Figure 9-3 describes back-substitution).

While Gaussian Elimination is typically not used when the coefficients in A and
b are floating point numbers (here mainly iterative methods are used for deter-
mining approximative solutions), it plays an important role if the coefficients
are integer or rational numbers and the equation is to be solved exactly (as it
is done in computer algebra systems).

Sequential Program

Your first task is to write in C (or Fortran) a function solve(A, b) that returns
the solution of the linear system determined by matrix A and vector b (or null,
if there is no solution or there exist multiple solutions).

In your implementation, you may use for coefficients and results simply floating
point numbers (C type float) but, in order to simulate the larger computation
time of arbitrary precision arithmetic, use in your benchmarks the function

float smult(float a, float b)
{

float c = 0;
for (int i=0; i<10000; i++) { c = c*c; }
return a*b+c;

}

as a “slow multiplication” operation whenever the multiplication of coefficients
is required.

You may construct a “straight-forward” version of the algorithm where any non-
zero coefficient may serve as a pivot element in the triangulization step (i.e. is
not necessary to take the element with the maximum absolute value, as it is
done in the algorithm of Figure 9-1).

Demonstrate the correctness of your program by solving a random 4× 4 system
and giving the output of the program (system and solution).

Benchmark the execution time of solve for randomly initialized matrices of
dimensions N = 256 and N = 378 (in case these values take much too long or
much too short, you may adapt N correspondingly).
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Parallel Program

The more time-consuming part of Gaussian Elimination is the conversion of the
system into upper-triangular form where in n iterations one row of the system
after the other is converted into the right form. In iteration i of the algorithm,
all coefficients of A below and to the right of position (i, i) have to be processed
(see Figure 9-12); since this can be done independently for each coefficient, we
have basically a parallel algorithm.

So compile your previously constructed program (without any changes to the
source code) with the options -parallel -par-report3 and investigate and
explain the compilation report. Most probably, however, the compiler will not
have been able to parallize the program effectively.

If this is indeed the case, then determine the inhibitors of parallelization and
rewrite your program in such a way that the automatically parallelizing compiler
gives a better result. For instance, rather than using an array marked (as is
done in Figure 9-1) it might be wise to permute the rows of the matrix such
that a contiguous range of rows is processed in the core loop (you have to
record the permutation for constructing the coefficients of x in the right order).
Alternatively (or in addition) it might be useful to to copy the row with the
“picked” pivot value into an auxiliary vector and use this rather than A[picked ]
in the innermost loop. In general, try to make the two innermost loops as simple
as possible such that the compiler can make use of the inherent parallelism.

Demonstrate the correctness of your rewritten program in the same way as for
the original one. Compile the program with the parallelization option switched
on and explain the compiler output in the same way as above.

If necessary, repeat above steps until you have a satisfying parallel program
(or if you run out of time/motivation ;-). Benchmark the final version of your
program for the values of N given above and for P = 1, 2, 4, 8, 16 processrors.

In your (sequential and parallel) benchmarks, apply the same strategy as ex-
plained in Exercise 1 (you may just perform 3 runs and take the average).
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