
Parallel Program Design

Parallel Program Design

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz



Parallel Program Design

A Methodical Approach

Design proceeds in various stages

•Machine-independent issues are considered
early in the design.
– concurrency

– scalability

Design abstract algorithm with these qual-
ities.
•Machine-specific aspects are deferred to

the end of the design.
– locality

– other performance-related issues

Consider efficient execution on real archi-
tectures.

Wolfgang Schreiner 1



Parallel Program Design

Design Stages

1. Partitioning
Decompose computation and data into small tasks; find

opportunities for parallelism.

2. Communication
Determine communication required to coordinate task

execution and define appropriate communication struc-

tures.

3. Agglomeration
Evaluate task and communication structures with re-

spect to performance requirements; combine tasks into

larger tasks.

4. Mapping
Assign each task to a processor such that processor

utilization is maximized and communication costs are

minimized.

(See Foster, Figure 2.1)

Wolfgang Schreiner 2



Parallel Program Design

The Partitioning Stage

Expose opportunities for parallel execution;
determine a fine-grained decomposition of the
problem.

Focus of partitioning may be on

•Data ⇒ domain decomposition
Partition data and then work out how to associate com-

putation with data.

• Computation ⇒ functional decomposition
Partition computation into tasks and then associate

data to tasks.

Complementary approaches; they may be ap-
plied to different parts of a problem and/or
yield alternative algorithms for the same prob-
lem.

Wolfgang Schreiner 3



Parallel Program Design

Domain Decomposition

Decompose data associated with a problem.

•Divide data into pieces of approximately
equal size.

• Partition computation by associating each
operation with the data on which it oper-
ates.

• Set of tasks = (data, operations)

• If operation requires data from several
tasks, communication is required.

• Example: decomposition of 3D grid into
one task for each grid point.

Typically for problems with large central data
structures.
(See Foster, Figure 2.2)

Wolfgang Schreiner 4



Parallel Program Design

Functional Decomposition

Decompose computation that is to be per-
formed.

•Determine set of disjoint tasks.

•Determine data requirements of each task.

• If requirements overlap, communication is
required.

Applied to problems without central data
structures or to different parts of a problem.
(See Foster, Figure 2.3)

Wolfgang Schreiner 5



Parallel Program Design

Partition Design Checklist

1. There should be at least an order of mag-
nitude more tasks than processors.

Flexibility for further design stages.

2. Avoid redundant computations and data.
Otherwise algorithm may not be scalable for large prob-

lems.

3. Tasks should be of comparable size.
Otherwise, load balancing may become difficult.

4. Task number should scale with problem
size.

Otherwise, algorithm is restricted to small problems on

small machines.

5. Reconsider alternative partitions.
Check both domain and functional decompositions.

Wolfgang Schreiner 6



Parallel Program Design

The Communication Stage

Specify flow of information between tasks

• Communication structure (“channels”)
Connections between tasks that require data (“con-

sumers”) with those that possess those data (“produc-

ers”).

• Communication contents (“messages”)

Optimizations

• Avoid unnecessary channels and communi-
cation operations

•Distribute communication operations over
many tasks

•Organize communication such that concur-
rent execution is possible.

Conceptual structure of a parallel program.

Wolfgang Schreiner 7



Parallel Program Design

Communication Structure

Determining communication requirements

• Functional decomposition: simple
Data flow between tasks.

•Domain decomposition: complex
Operations may require data from several tasks; orga-

nizing communication in an efficient way can be diffi-

cult.

Wolfgang Schreiner 8



Parallel Program Design

Communication Types

Essential characteristics of communication

• Local vs. global
Communication with small set of tasks (“neighbors”)

or with many other tasks.

• Structured vs. unstructured
Task and neighbors form a regular structure (tree, grid,

. . . ) or arbitrary graphs.

• Static vs. dynamic
Identity of communication partners known at compile

time and does not change or depends runtime data and

may be variable.

• Synchronous vs. asynchronous
Producers/consumers execute in a coordinated fashion

cooperating in data transfer or consumer may require

data without cooperation of producer.

Wolfgang Schreiner 9



Parallel Program Design

Local Communication

Example: Jacobi finite difference method

X
(t+1)
i,j =

4X
(t)
i,j +X

(t)
i−1,j+X

(t)
i+1,j+X

(t)
i,j−1+X

(t)
i,j+1

8

for t = 0 to T-1

send X(t)(i,j) to each neighbor

receive from neighbors

X(t)(i-1,j), X(t)(i+1,j),

X(t)(i,j-1), X(t)(i,j+1)

compute X(t+1)(i,j)

end

Easy parallelization, but many iterations.
Improvement: Gauss-Seidel strategy

X
(t+1)
i,j =

4X
(t)
i,j +X

(t+1)
i−1,j +X

(t)
i+1,j+X

(t+1)
i,j−1 +X

(t)
i,j+1

8

Elements are updated in a particular order.
(See Foster, Figures 2.4 and 2.5)

Wolfgang Schreiner 10



Parallel Program Design

Global Communication

Example: parallel reduction operation

S =
N−1∑

i=0
Xi

Initial: central manager approach

• Time complexity O(N)

• Centralized algorithm
Computation and communication operations are not

distributed.

• Sequential algorithm
Computation and communication operations cannot

proceed concurrently.

Communication structure must be reorga-
nized.
(See Foster, Figure 2.6)

Wolfgang Schreiner 11



Parallel Program Design

Global Communication

1. Distribute communication/computation

Si = Xi + Si−1

Concurrency only for multiple summations!

2. Uncover concurrency: divide&conquer

∑2n−1
i=0 Xi = ∑2n−1−1

i=0 Xi + ∑2n−1
i=2n−1 Xi

Concurrency within one summation!
divide&conquer:

if base_case then

solve_problem

else

partition problem into L and R

solve subproblem L with d&c

solve subproblem R with d&c

combine solutions of L and R

(See Foster, Figures 2.7 and 2.8)

Wolfgang Schreiner 12



Parallel Program Design

Unstructured/Dynamic Communica-
tion

Communication patterns

• Complex structures,

•Depending on input data,

• Changing over time.

Agglomeration and mapping difficult.

Example: Finite Element Method
(See Foster, Figure 2.9)

Wolfgang Schreiner 13



Parallel Program Design

Asynchronous Communication

• Producers do not know when consumers
require data.

• Consumers must explicitly request data
from producers.

• Typically for set of tasks that operate on
shared data structure.

How to manage data structures that are arbi-
trarily accessed by many tasks?

Wolfgang Schreiner 14



Parallel Program Design

Shared Data Structures

1. Distribute data structure among computa-
tion tasks.

Each task has to regularly poll during computation for

pending requests.

2. Distribute data structure among additional
server tasks.

Only purpose of these tasks is to serve read/write re-

quests.

3. Use a shared-memory system.
Direct read/write possible; synchronization of tasks re-

quired.

Performance characteristics depends on ma-
chine.

Wolfgang Schreiner 15



Parallel Program Design

Communication Design Checklist

1. Have all tasks the same number of com-
munication operations?

Otherwise non-scalability; try to distribute communica-

tion.

2. Does each task communicate with a small
set of neighbors?

Otherwise non-scalability; try to reorganize algorithm.

3. Can communication operations proceed
concurrently?

Otherwise non-scalability; try to use divide-and-

conquer.

4. Can computations in different tasks pro-
ceed concurrently?

Otherwise non-scalability; try to reorder communica-

tion and computation.

Wolfgang Schreiner 16



Parallel Program Design

The Agglomeration Stage

After partitioning and communication:

• Large number of small tasks,

• Large amount of communication.

Algorithm not efficient on real computers.

Combine tasks into larger tasks

1. Increase task granularity.
Reduce communication costs.

2. Retain design flexibility.
Scalability and mapping decisions.

3. Reduce engineering costs.
Development overhead.

(See Foster, Figure 2.11)

Wolfgang Schreiner 17



Parallel Program Design

Increasing Granularity

• Surface to volume effects
Communication ∼ surface of subdomain; computation

∼ subdomain volume.

Example: 2D Grid
– “surface” scales with problem size,

– “volume” scales with problem size squared.

Communication/computation ratio de-
creases as task size increases.

• Replicating communication
Trade off replicated computation for reduced commu-

nication.

Example: replicated summation

• Avoiding Communication
Agglomerate tasks that cannot execute concurrently.

(See Foster, Figures 2.13, 2.14, 2.15)

Wolfgang Schreiner 18



Parallel Program Design

Preserving Flexibility

• Agglomeration must not limit scalability,

• No unnecessary limits on number of tasks,

• Task number may increase when problem
and/or machine grows.

Task number should be an order of magnitude
larger than processor number!

If several tasks are mapped to the same processor, the

processor does not become idle when a task is blocked in

communication.

Overlapping computation and communica-
tion!

Wolfgang Schreiner 19



Parallel Program Design

Reducing Software Engineering Costs

Efficiency and flexibility are not the only de-
sign criteria!

Consider also development costs:

• Avoid extensive code changes
In a multidimensional grid code, it may be advanta-

geous to avoid partitioning in one dimension, if then

existing routines can be reused without change.

• Consider application context
– Parallel algorithm is part of larger program,

– Different data structures/decompositions may be required

in context,

– Restructuring of data may be required.

Wolfgang Schreiner 20



Parallel Program Design

Agglomeration Design Checklist

1. Has agglomeration reduced communica-
tion costs by increasing locality?

2. If agglomeration replicates computation,
do benefits outweigh costs?

3. If agglomeration replicates data, is scala-
bility not compromised?

4. Have tasks similar computation and com-
munication costs?

5. Does the task number still scale with prob-
lem size?

6. Is ther still sufficient concurrency for future
target computers?

7. Can task number be further reduced with-
out introducing load imbalances?

8. How far must the code be modified?

Wolfgang Schreiner 21



Parallel Program Design

The Mapping Stage

Where does each task execute?
Only for distributed memory computers

On shared memory systems, the operating system effi-

ciently schedules executable tasks to available processors.

• Place tasks that are able to execute con-
currently on different processors.

Enhance concurrency.

• Place tasks that communicate frequently
on the same processor.

Increase locality.

Mapping problem is NP-complete!

Wolfgang Schreiner 22



Parallel Program Design

Mapping Strategies

• Static mapping
Fixed number of equal-sized tasks and structured local

and global communication (simple domain decomposi-

tion).

(See Foster, Figure 2.16)

• Load balancing
Variable amounts of work per task or unstructured com-

munication patterns (more complex domain decompo-

sition).

•Dynamic load balancing
Number of tasks or amount of computation or commu-

nication per task changes.

• Task scheduling algorithms
Many short-lived tasks that coordinate with other tasks

only at start and end of execution (functional decom-

position).

Wolfgang Schreiner 23



Parallel Program Design

Load Balancing Algorithms

• Recursive bisection
Partition a domain recursively into subdomains of equal

computational cost.

Coordinate bisection, unbalanced bisec-
tion, graph bisection (see Foster, Plates 1
and 2).

• Local algorithms
Only use information from neighbor processors.

Compare load with that of neighbors;
transfer load if difference exceeds treshold
(see Foster, Figure 2.17 and Plate 3).

Wolfgang Schreiner 24



Parallel Program Design

Load Balancing Algorithms

• Probabilistic methods
Allocate tasks to randomly selected processors.

Low cost, good load balancing if number
of tasks is much higher than number of
processors, but high communication.

• Cyclic mappings
Allocate tasks to processors in a round-robin fashion.

Similar to probabilistic (see Foster, Figure
2.18).

Wolfgang Schreiner 25



Parallel Program Design

Task Scheduling Algorithms

• Applicable when functional decomposition
yields many small tasks.

• Task pool is maintained into which tasks
are placed for allocation to processors.

• Tasks become data structures representing
“subproblems” to be solved by set of work-
ers (processors).

Which strategy is applied to allocate problems
to workers?

Conflicting goals:

• Independent operation (to reduce commu-
nication costs),

• Global knowledge of computation state (to
improve load balance).

Wolfgang Schreiner 26



Parallel Program Design

Task Scheduling Algorithms

Strategies to allocate problems to workers

•Manager/worker
– Central manager task distributes problems,

– Idle worker asks manager for work,

– Workers send new tasks to manager.

• Hierarchical manager/worker
– Subsets of workers with own submanager,

– Submanagers communicate with manager to balance load

among worker sets.

•Decentralized schemes
– Separate task pool on each processor,

– Idle processors request work from other processors.

(See Foster, Figure 2.19)

Wolfgang Schreiner 27



Parallel Program Design

Mapping Design Checklist

1. SPMD algorithm: consider dynamic task
creation

Simpler algorithm.

2. Dynamic task creation: consider SPMD al-
gorithm

Greater control over scheduling of computation and

communication.

3. Centralized load-balancing: veryify man-
ager does not become bottleneck.

4. Dynamic load-balancing: consider proba-
bilistic/cyclic mappings.

5. Probablisitic/cyclic methods: verify that
number of tasks is large enough.

Wolfgang Schreiner 28


