
SPP Language and
Programming Overview
Course Notes

Order No. TRN-XXXX

Preliminary Edition
January 1995

CONVEX Education Center
Richardson, Texas
United States of America

SPP Language and
Programming Overview
Course Notes

Order No. TRN-XXXX

Copyright 1994 CONVEX Computer Corporation
All rights reserved.

This document is copyrighted. This document may not, in whole or part,
be copied, duplicated, reproduced, translated, electronically stored, or
reduced to machine readable form without prior written consent from
CONVEX Computer Corporation.

Although the material contained herein has been carefully reviewed,
CONVEX Computer Corporation does not warrant it to be free of errors or
omissions. CONVEX reserves the right to make corrections, updates,
revisions or changes to the information contained herein. CONVEX does
not warrant the material described herein to be free of patent
infringement.

UNLESS PROVIDED OTHERWISE IN WRITING WITH CONVEX COMPUTER
CORPORATION (CONVEX), THE PROGRAMS DESCRIBED HEREIN ARE PROVIDED AS
IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES. THE ABOVE EXCLUSION
MAY NOT BE APPLICABLE TO ALL PURCHASERS BECAUSE WARRANTY RIGHTS
CAN VARY FROM STATE TO STATE. IN NO EVENT WILL CONVEX BE LIABLE TO
ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, ARISING OUT OF
THE USE OR INABILITY TO USE THIS PROGRAM. CONVEX WILL NOT BE LIABLE
EVEN IF IT HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGE BY THE
PURCHASER OR ANY THIRD PARTY.

CONVEX and the CONVEX logo (“C”) are registered trademarks of CONVEX Computer Corporation.

SPP/UX and Exemplar are trademarks of CONVEX Computer Corporation.

HP/UX is a trademark of Hewlett-Packard Company.

UNIX is a trademark of AT&T Bell Laboratories.

Printed in the United States of America

Topics:

Module 9 Automatic parallelism 147

9
• -O3 optimization

• Inhibitors of parallelization

• Data dependence in loops

• Automatically parallelized loops

• Exercises

Automatic parallelism

148 SPP Language and Programming Overview

Module 9 Automatic parallelism 149

A
u

to
 p

a
ra

lle
l

-O3 optimization

• Primary goal of -O3 optimizations is parallelization

• Divides a program into threads

• A thread is a sequence of instructions that execute
on a single CPU

• Parallelism can exist at both the loop and task level

• Compilers automatically exploit loop level in
which all loops are examined:

• Explicitly coded loops

• Fortran 90 array expressions

• Task level parallelism can be created by the user
using the BEGIN_TASK, NEXT_TASK and
END_TASKS directives discussed later

150 SPP Language and Programming Overview

-O3 optimization - cont.

• Requirements for automatic loop parallelization:

• Loop must not contain any data dependencies

• Loop must have a known iteration count at
runtime

• Loop nest has sufficient parallel work to be done

• Loop must not contain any I/O statements

• Loop must not contain multiple entries or exits
(includes STOP and RETURN statements)

• Loop must not contain any procedure calls other
than intrinsic functions

• Loop must not contain potentially aliased scalar or
array variables

• When a loop is automatically parallelized:

• The loop is divided up into several smaller
iteration spaces parceled out to be run
simultaneously on all available processors

• Compiler will try to parallelize the outermost loop

• Compiler takes care of privatization of loop
variables as needed, for example, the loop index is
always privatized

Module 9 Automatic parallelism 151

A
u

to
 p

a
ra

lle
l

-O3 optimization- cont.

• Compiler creates following types of parallelism:

• thread-way (one-dimensional parallelism)

• node-way (two-dimensional parallelism)

• -or all compiler flag shows the complete
optimization report including the variables
privatized

• Executable code generated will automatically run on as
many processors as are available at runtime without
recompilation

• Normally all processors of the subcomplex

• Smaller number of processors specified via:

• mpa(1) utility

• LOOP_PARALLEL(max_threads=m) and
PREFER_PARALLEL(max_threads=m)
compiler directives and pragmas which limit
threads

• +min/+max loader options

152 SPP Language and Programming Overview

-O3 optimization- cont.

• Thread activity:

• Shared memory program runs as a collection of
threads on multiple processors

• At program initiation, a separate thread of
execution is started on each of the processors in
the subcomplex

• All threads spin for a default amount of time and
then go idle except for thread 0 which runs all of
the serial code of the program

• When thread 0 encounters a parallel loop or task,
it wakes-up or ”spawns” the other threads
signalling them to begin execution of the parallel
code

• The spawned threads then become active
acquiring spawned thread IDs (1 to numprocs-1),
run until their portion of the parallel code is
finished or until they get time-sliced out, and then
spin and go idle once again. Thread 0 also
participates running its portion of the parallel
code.

• All spawned threads execute to completion of
their spawned context before thread 0 continues

Module 9 Automatic parallelism 153

A
u

to
 p

a
ra

lle
l

-O3 optimization - cont.

• Thread-way parallelism - Encountered by thread 0, it
causes all threads available to the application to
participate. Each of these threads is assigned a portion
of the loop iteration space to execute.

Consider the following loop:

DO I = 1, 1024
A(I) = B(I) + C(I)

ENDDO

• If run on 8 processors, each thread will execute:

1024/8 = 128 iterations

• If run on 128 processors, each thread will execute:

1024/128 = 8 iterations

• Compiler transforms the loop such that the
starting and stopping iteration values for each
thread are determined at runtime based on the
number of available processors

• If the iteration count is not evenly divisible by the
number of threads, some threads perform fewer
iterations than others

154 SPP Language and Programming Overview

-O3 optimization - cont.

This figure shows thread activity and the parceling of loop
iterations for the previous loop running on 8 processors.

Threads*

0

spawn

idle idle idle idle idle idle idle

spawn spawn spawn spawn spawn spawn

idle idle idle idle idle idle idle

I =
1,128

I =
129,
256

I =
257,
384

I =
385,
512

I =
513,
640

I =
641,
768

I =
769,
896

I =
897,
1024

* Numbers shown represent spawn thread IDs

PROGRAM PARAXPL
.
.
.
DO I=1,1024

A(I)=B(I)+C(I)
.
.
.

ENDDO
.
.
.

1 2 3 4 5 6 7

Module 9 Automatic parallelism 155

A
u

to
 p

a
ra

lle
l

-O3 optimization - cont.

This figure shows the loop parallelized running on 8
processors.

DO I = 1, 128
A(I) = B(I) + C(I)

ENDDO

DO I = 129, 256
A(I) = B(I) + C(I)

ENDDO

DO I = 385, 512
A(I) = B(I) + C(I)

ENDDO

DO I = 257, 384
A(I) = B(I) + C(I)

ENDDO

THREAD 0 THREAD 1

THREAD 2 THREAD 3

DO I = 513, 640
A(I) = B(I) + C(I)

ENDDO

DO I = 641, 768
A(I) = B(I) + C(I)

ENDDO

DO I = 897, 1024
A(I) = B(I) + C(I)

ENDDO

DO I = 769, 896
A(I) = B(I) + C(I)

ENDDO

THREAD 4 THREAD 5

THREAD 6 THREAD 7

156 SPP Language and Programming Overview

-O3 optimization - cont.

• Node-way parallelism - Encountered by thread 0, it
causes 1 thread per hypernode available to the
application to participate. Each of these threads is
assigned a portion of the node-way loop iteration
space to execute. However, node-way automatic
parallelism will never be created, unless the compiler
finds a thread-way parallel inner loop or an
opportunity for thread-way parallelism via a function
call.

Thread-way loop parallelism encountered within a
node-way parallel construct, causes each thread within
the hypernode to be assigned a portion of the thread-
way loop iteration space to execute.

Consider the following loop:

DO J = 1, 1024
DO I = 1, 1024

A(I,J) = B(I,J) + C(I,J)
.
.

ENDDO
ENDDO

• Assuming no inhibitors and there is enough work,
the compiler automatically parallelizes the J loop
across hypernodes and the I loop across threads
within those hypernodes.

Module 9 Automatic parallelism 157

A
u

to
 p

a
ra

lle
l

-O3 optimization - cont.

• If run on a 2 4-processor hypernode subcomplex:

The node-way J loop spawns 2 threads, one on
each hypernode. Each of these threads will
execute:

1024/2 = 512 iterations of the J loop

The I loop then spawns thread-way parallelism
within each hypernode. Each of these threads will
execute:

1024/4 = 256 iterations of the I loop

0

J=513,
1024

J=1,
512

I=1,
256

I =
257,
512

I =
513,
768

I =
769,
1024

I=1,
256

I =
257,
512

I =
513,
768

I =
769,
1024

Hypernode 0 Hypernode 1

PROGRAM 2DXPL
.
.
.
DO J=1,1024

DO I=1,1024
.
.
.
.

ENDDO

ENDDO
.
.
.

idle idle idle idle idle idle

spawnspawn spawn
1 2 3

spawn
1

spawn
0

spawnspawn spawn
1 2 3

idle idle idle idle idle idle idle

idle

(1)

158 SPP Language and Programming Overview

-O3 optimization - cont.

• Node-way parallelism can be disabled by
specifying the -nonodepar compiler flag

• Disables automatic and directive-specified
node-way parallelism

• Automatic and directive-specified thread-
way parallelism still enabled

• Eliminates node-way parallel overhead on a
single node subcomplex

• Node-way and thread-way automatic parallelization
can be disabled by specifying the -noautopar compiler
flag:

• Directive-specified node-way and thread-way
parallelism still enabled through the usage of
PREFER_PARALLEL, LOOP_PARALLEL, and
BEGIN_TASKS compiler directives.

• All other loops treated as if the NO_PARALLEL
directive was specified for them

Module 9 Automatic parallelism 159

A
u

to
 p

a
ra

lle
l

Inhibitors of parallelization

Most constructs that inhibit data localization also inhibit
parallelization for the same reason. Specifically:

• Loop carried dependencies (LCDs). More categories of
LCDs can inhibit parallelization than data localization:

• Backward LCDs (B-LCD)

• Forward LCDs (F-LCD)

• Output LCDs (O-LCD)

• Apparent LCDs (A-LCD)

Examples of each will be given in the following Data
dependence in loops section

• Potential for aliased scalar or array variables

• Multiple loop entries or exits (includes STOP and
RETURN statements)

• Procedure calls other than intrinsic functions

• I/O statements

More inhibitors:

• Insufficient amount of parallel work to be done in loop

• Loop iteration count unknown at runtime

160 SPP Language and Programming Overview

Data dependence in loops

• A loop-carried-dependence (LCD) results from an
address being assigned a value in one loop iteration
and the same address being assigned or referenced in
another iteration.

Example:

DO I = 2,N
A(I) = A(I-1) + B(I)

ENDDO

An example of a Backward LCD (B-LCD):

• The A(I-1) reference on iterations 3 through N was
assigned on the previous iteration as A(I)

• Each iteration must execute to completion before
the next can begin. Therefore it is fruitless to
assign parallel threads of execution to compute
different iterations

• B-LCDs cannot be automatically parallelized

Module 9 Automatic parallelism 161

A
u

to
 p

a
ra

lle
l

Data dependence in loops - cont.

Example:

DO I = 2,N
A(I) = A(I+1) + B(I)

ENDDO

An example of a Forward LCD (F-LCD):

• The A(I+1) referenced on iterations 2 through N-1
is assigned by the following iteration

• If parallel threads of execution attempt to execute
different iterations of the loop, it is quite possible,
for example, that A(3) might be assigned in
iteration 3 before A(3) is referenced by iteration 2

• F-LCDs cannot be automatically parallelized

• The example can be automatically parallelized by
making an extra copy of array A:

DO I = 2,N
OLDA(I+1) = A(I+1)

ENDDO

DO I = 2,N
A(I) = OLDA(I+1) + B(I)

ENDDO

Creating the 2nd loop clearly adds overhead.
Therefore, it must be used with care.

162 SPP Language and Programming Overview

Data dependence in loops - cont.

Example:

DO I = 2,N
A(J(I)) = B(I)

ENDDO

An example of a potential Output LCD (O-LCD):

• If J(I) contains repeated values (i.e., J(3) = J(7) = 4),
then 2 different iterations are attempting to assign
a value to the same address

• If parallel threads are executing the iterations,
then the values output by the loop into array A
depend on the order in which the iterations are
executed

• The compiler will not automatically parallelize
such loops

Module 9 Automatic parallelism 163

A
u

to
 p

a
ra

lle
l

Data dependence in loops - cont.

Example:

DO I = 1,N
A(I) = A(J(I)) + 1.0

ENDDO

This is an example of an Apparent LCD (A-LCD):

• Since the value assigned to A(I) in one iteration
might be used in a later iteration, the compiler
lacks sufficient information to determine whether
an LCD exists or not

• Rather than risk wrong answers, the compiler will
not automatically parallelize such loops

Summary: the compiler does not automatically
parallelize loops containing actual or apparent array
based LCDs.

164 SPP Language and Programming Overview

Automatically parallelized loops

Following are examples of loops that are automatically
parallelized by the compiler at -O3. All examples assume
that there is no aliasing among the arrays.

SUBROUTINE MYSUB(A,B,C,N)

REAL*4 A(N,N), B(N,N), C(N,N)

DO J = 1, N
DO I = 1, N

A(I,J) = B(I,J) + C(J,I)
ENDDO

ENDDO

RETURN

END

The above nested loop will automatically parallelize,
since there are no LCDs.

Module 9 Automatic parallelism 165

A
u

to
 p

a
ra

lle
l

Automatically parallelized loops - cont.

The compiler can handle some scalar LCDs.

SUBROUTINE MYSUB(A,B,Y,N)

REAL*4 A(N), B(N), Y(N), X(N), S

J = 5
DO I = 1, N

S = A(I) * B(I)
J = J + 1
X(I) = S * Y(J)

ENDDO

RETURN

END

• If parallel threads execute different iterations, they can
overwrite each other’s values of S (O-LCD)

• The compiler avoids this problem by providing a
private version of S for each thread

• If the value of S is needed after the loop, the processor
executing the Nth iteration stores its private value in S

• J, a loop induction variable like I, has the same
problem as S (O-LCD) plus is a B-LCD. A private
version of J is provided to each thread and its value is
determined as a function of I:
(J = Jinit + I, where Jinit = J at loop invocation)

166 SPP Language and Programming Overview

Automatically parallelized loops - cont.

The compiler can handle some scalar LCDs known as
reductions. Generally, a reduction has the form:

X = X operator Y

where:

X - variable not assigned or used elsewhere in the loop
Y - a loop constant expression not involving X
operator is +, -, *, .AND., .OR., .EQV. or .NEQV.

SUBROUTINE MYSUB(A,B,C,D,E,N,SUM)

REAL*8 A(N),B(N),C(N),D(N),E(N),SUM
INTEGER*4 N

DO I = 1, N
A(I) = E(I) / C(I)
SUM = SUM + A(I) * B(I) !reduction
D(I) = A(I) / B(I)

ENDDO

RETURN
END

• If parallel threads execute different iterations, they can
overwrite each other’s values of SUM (O-LCD)

• The compiler avoids this problem by providing a
private version of SUM for each thread in which each
thread’s partial sum is computed. The private SUMs
are added to compute final SUM by the compiler.

Module 9 Automatic parallelism 167

A
u

to
 p

a
ra

lle
l

Automatically parallelized loops - cont.

The compiler also recognizes scalar reductions of the
form:

X = function (X, Y)

where:

X - variable not assigned or used elsewhere in the loop
Y - a loop constant expression not involving X
function is the intrinsic MAX or MIN function

SUBROUTINE MYSUB(A,B,C,D,E,N)

REAL*8 A(N),B(N),C(N),D(N),E(N)
REAL*8 MAX, X
INTEGER*4 N

X = 0.0

DO I = 1, N
A(I) = E(I) / C(I)
X = MAX(X,A(I)) !reduction
D(I) = A(I) / B(I)

ENDDO
RETURN
END

• If parallel threads execute different iterations, they can
overwrite each other’s values of X (O-LCD)

• The compiler provides a private version of X for each
thread. Thread 0 uses private Xs to set original X.

168 SPP Language and Programming Overview

Automatically parallelized loops - cont.

Even entire arrays can be privatized as needed for the
array Q in order to parallelize the J loop in the example
below:

SUBROUTINE MYSUB(U,M)

PARAMETER (N = 99)

REAL*4 P(N), Q(N), R(N), U(M), T(N,M)

DO J = 1, M
DO I = 1, N

Q(I) = P(I) * R(I)
T(I,J) = Q(I) * U(J)

ENDDO
ENDDO

RETURN

END

• If parallel threads execute different iterations of J, they
can overwrite each other’s values of Q(I) (O-LCD)

• The compiler avoids this problem by providing a
private version of the Q array for each thread, since it
knows Q’s size at compile time

• Parallelized, each thread sets a unique subarray of T

• Compiler also provides a private version of I for each
thread

Module 9 Automatic parallelism 169

A
u

to
 p

a
ra

lle
l

Automatically parallelized loops - cont.

SUBROUTINE MYSUB

PARAMETER (M = 50, N = 10)

REAL*4 X(100,100), Y(100,100)

Y(2:M+1:2, 2:N+1) = 1.0
X(1:M:2, 1:N) = Y(2:M+1:2, 2:N+1)

RETURN

END

The above Fortran 90 array assignments will
automatically parallelize, creating 2 parallel loops,
since by definition there are no dependencies.

170 SPP Language and Programming Overview

Exercises

[1] Can the compiler automatically parallelize any of these loops?

(a) DO I = 1, N
J = J + 1
A(I) = B(J)

ENDDO

(b) DO I = 1, N
IF (A(I) .LT. 0.0) THEN

J = J + 1
A(I) = B(J)

ENDIF
ENDDO

(c) DO WHILE (A(I) .LT. Z)
I = I + 1
A(I) = B(I)

ENDDO

(d) DO WHILE (I .LT. N)
I = I + 1
A(I) = B(I)

ENDDO

(e) DO I = 1, N
S = C(I) * B(I)
IF (S .GT. 0.D0) THEN

T = S + 5.D0
ELSE

T = S + 4.D0
ENDIF
A(I) = A(I) + T

ENDDO

(f) DO I = 1, N
A(J(I)) = A(K(I)) + 1

ENDDO

