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-O3 optimization

• Primary goal of -O3 optimizations is parallelization

• Divides a program into threads

• A thread is a sequence of instructions that execute
on a single CPU

• Parallelism can exist at both the loop and task level

• Compilers automatically exploit loop level in
which all loops are examined:

• Explicitly coded loops

• Fortran 90 array expressions

• Task level parallelism can be created by the user
using the BEGIN_TASK, NEXT_TASK and
END_TASKS directives discussed later
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-O3 optimization - cont.

• Requirements for automatic loop parallelization:

• Loop must not contain any data dependencies

• Loop must have a known iteration count at
runtime

• Loop nest has sufficient parallel work to be done

• Loop must not contain any I/O statements

• Loop must not contain multiple entries or exits
(includes STOP and RETURN statements)

• Loop must not contain any procedure calls other
than intrinsic functions

• Loop must not contain potentially aliased scalar or
array variables

• When a loop is automatically parallelized:

• The loop is divided up into several smaller
iteration spaces parceled out to be run
simultaneously on all available processors

• Compiler will try to parallelize the outermost loop

• Compiler takes care of privatization of loop
variables as needed, for example, the loop index is
always privatized
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-O3 optimization- cont.

• Compiler creates following types of parallelism:

• thread-way (one-dimensional parallelism)

• node-way (two-dimensional parallelism)

• -or all compiler flag shows the complete
optimization report including the variables
privatized

• Executable code generated will automatically run on as
many processors as are available at runtime without
recompilation

• Normally all processors of the subcomplex

• Smaller number of processors specified via:

• mpa(1) utility

• LOOP_PARALLEL(max_threads=m) and
PREFER_PARALLEL(max_threads=m)
compiler directives and pragmas which limit
threads

• +min/+max loader options
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-O3 optimization- cont.

• Thread activity:

• Shared memory program runs as a collection of
threads on multiple processors

• At program initiation, a separate thread of
execution is started on each of the processors in
the subcomplex

• All threads spin for a default amount of time and
then go idle except for thread 0 which runs all of
the serial code of the program

• When thread 0 encounters a parallel loop or task,
it wakes-up or ”spawns” the other threads
signalling them to begin execution of the parallel
code

• The spawned threads then become active
acquiring spawned thread IDs (1 to numprocs-1),
run until their portion of the parallel code is
finished or until they get time-sliced out, and then
spin and go idle once again. Thread 0 also
participates running its portion of the parallel
code.

• All spawned threads execute to completion of
their spawned context before thread 0 continues
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-O3 optimization - cont.

• Thread-way parallelism - Encountered by thread 0, it
causes all threads available to the application to
participate. Each of these threads is assigned a portion
of the loop iteration space to execute.

Consider the following loop:

DO I = 1, 1024
A(I) = B(I) + C(I)

ENDDO

• If run on 8 processors, each thread will execute:

1024/8 = 128 iterations

• If run on 128 processors, each thread will execute:

1024/128 = 8 iterations

• Compiler transforms the loop such that the
starting and stopping iteration values for each
thread are determined at runtime based on the
number of available processors

• If the iteration count is not evenly divisible by the
number of threads, some threads perform fewer
iterations than others
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-O3 optimization - cont.

This figure shows thread activity and the parceling of loop
iterations for the previous loop running on 8 processors.

Threads*

0

spawn

idle idle idle idle idle idle idle

spawn spawn spawn spawn spawn spawn

idle idle idle idle idle idle idle

I =
1,128

I =
129,
256

I =
257,
384

I =
385,
512

I =
513,
640

I =
641,
768

I =
769,
896

I =
897,
1024

* Numbers shown represent spawn thread IDs

PROGRAM PARAXPL
.
.
.
DO I=1,1024

A(I)=B(I)+C(I)
.
.
.

ENDDO
.
.
.

1 2 3 4 5 6 7
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-O3 optimization - cont.

This figure shows the loop parallelized running on 8
processors.

DO I = 1, 128
A(I) = B(I) + C(I)

ENDDO

DO I = 129, 256
A(I) = B(I) + C(I)

ENDDO

DO I = 385, 512
A(I) = B(I) + C(I)

ENDDO

DO I = 257, 384
A(I) = B(I) + C(I)

ENDDO

THREAD 0 THREAD 1

THREAD 2 THREAD 3

DO I = 513, 640
A(I) = B(I) + C(I)

ENDDO

DO I = 641, 768
A(I) = B(I) + C(I)

ENDDO

DO I = 897, 1024
A(I) = B(I) + C(I)

ENDDO

DO I = 769, 896
A(I) = B(I) + C(I)

ENDDO

THREAD 4 THREAD 5

THREAD 6 THREAD 7
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-O3 optimization - cont.

• Node-way parallelism - Encountered by thread 0, it
causes 1 thread per hypernode available to the
application to participate. Each of these threads is
assigned a portion of the node-way loop iteration
space to execute. However, node-way automatic
parallelism will never be created, unless the compiler
finds a thread-way parallel inner loop or an
opportunity for thread-way parallelism via a function
call.

Thread-way loop parallelism encountered within a
node-way parallel construct, causes each thread within
the hypernode to be assigned a portion of the thread-
way loop iteration space to execute.

Consider the following loop:

DO J = 1, 1024
DO I = 1, 1024

A(I,J) = B(I,J) + C(I,J)
.
.

ENDDO
ENDDO

• Assuming no inhibitors and there is enough work,
the compiler automatically parallelizes the J loop
across hypernodes and the I loop across threads
within those hypernodes.
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-O3 optimization - cont.

• If run on a 2 4-processor hypernode subcomplex:

The node-way J loop spawns 2 threads, one on
each hypernode. Each of these threads will
execute:

1024/2 = 512 iterations of the J loop

The I loop then spawns thread-way parallelism
within each hypernode. Each of these threads will
execute:

1024/4 = 256 iterations of the I loop

0

J=513,
1024

J=1,
512
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256
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257,
512

I =
513,
768

I =
769,
1024

I=1,
256

I =
257,
512

I =
513,
768

I =
769,
1024

Hypernode 0 Hypernode 1

PROGRAM 2DXPL
.
.
.
DO J=1,1024

DO I=1,1024
.
.
.
.

ENDDO

ENDDO
.
.
.
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spawnspawn spawn
1 2 3

spawn
1

spawn
0

spawnspawn spawn
1 2 3
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idle

(1)
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-O3 optimization - cont.

• Node-way parallelism can be disabled by
specifying the -nonodepar compiler flag

• Disables automatic and directive-specified
node-way parallelism

• Automatic and directive-specified thread-
way parallelism still enabled

• Eliminates node-way parallel overhead on a
single node subcomplex

• Node-way and thread-way automatic parallelization
can be disabled by specifying the -noautopar compiler
flag:

• Directive-specified node-way and thread-way
parallelism still enabled through the usage of
PREFER_PARALLEL, LOOP_PARALLEL, and
BEGIN_TASKS compiler directives.

• All other loops treated as if the NO_PARALLEL
directive was specified for them
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Inhibitors of parallelization

Most constructs that inhibit data localization also inhibit
parallelization for the same reason. Specifically:

• Loop carried dependencies (LCDs). More categories of
LCDs can inhibit parallelization than data localization:

• Backward LCDs (B-LCD)

• Forward LCDs (F-LCD)

• Output LCDs (O-LCD)

• Apparent LCDs (A-LCD)

Examples of each will be given in the following Data
dependence in loops section

• Potential for aliased scalar or array variables

• Multiple loop entries or exits (includes STOP and
RETURN statements)

• Procedure calls other than intrinsic functions

• I/O statements

More inhibitors:

• Insufficient amount of parallel work to be done in loop

• Loop iteration count unknown at runtime
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Data dependence in loops

• A loop-carried-dependence (LCD) results from an
address being assigned a value in one loop iteration
and the same address being assigned or referenced in
another iteration.

Example:

DO I = 2,N
A(I) = A(I-1) + B(I)

ENDDO

An example of a Backward LCD (B-LCD):

• The A(I-1) reference on iterations 3 through N was
assigned on the previous iteration as A(I)

• Each iteration must execute to completion before
the next can begin. Therefore it is fruitless to
assign parallel threads of execution to compute
different iterations

• B-LCDs cannot be automatically parallelized
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Data dependence in loops - cont.

Example:

DO I = 2,N
A(I) = A(I+1) + B(I)

ENDDO

An example of a Forward LCD (F-LCD):

• The A(I+1) referenced on iterations 2 through N-1
is assigned by the following iteration

• If parallel threads of execution attempt to execute
different iterations of the loop, it is quite possible,
for example, that A(3) might be assigned in
iteration 3 before A(3) is referenced by iteration 2

• F-LCDs cannot be automatically parallelized

• The example can be automatically parallelized by
making an extra copy of array A:

DO I = 2,N
OLDA(I+1) = A(I+1)

ENDDO

DO I = 2,N
A(I) = OLDA(I+1) + B(I)

ENDDO

Creating the 2nd loop clearly adds overhead.
Therefore, it must be used with care.
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Data dependence in loops - cont.

Example:

DO I = 2,N
A(J(I)) = B(I)

ENDDO

An example of a potential Output LCD (O-LCD):

• If J(I) contains repeated values (i.e., J(3) = J(7) = 4),
then 2 different iterations are attempting to assign
a value to the same address

• If parallel threads are executing the iterations,
then the values output by the loop into array A
depend on the order in which the iterations are
executed

• The compiler will not automatically parallelize
such loops
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Data dependence in loops - cont.

Example:

DO I = 1,N
A(I) = A(J(I)) + 1.0

ENDDO

This is an example of an Apparent LCD (A-LCD):

• Since the value assigned to A(I) in one iteration
might be used in a later iteration, the compiler
lacks sufficient information to determine whether
an LCD exists or not

• Rather than risk wrong answers, the compiler will
not automatically parallelize such loops

Summary: the compiler does not automatically
parallelize loops containing actual or apparent array
based LCDs.
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Automatically parallelized loops

Following are examples of loops that are automatically
parallelized by the compiler at -O3. All examples assume
that there is no aliasing among the arrays.

SUBROUTINE MYSUB(A,B,C,N)

REAL*4 A(N,N), B(N,N), C(N,N)

DO J = 1, N
DO I = 1, N

A(I,J) = B(I,J) + C(J,I)
ENDDO

ENDDO

RETURN

END

The above nested loop will automatically parallelize,
since there are no LCDs.
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Automatically parallelized loops - cont.

The compiler can handle some scalar LCDs.

SUBROUTINE MYSUB(A,B,Y,N)

REAL*4 A(N), B(N), Y(N), X(N), S

J = 5
DO I = 1, N

S = A(I) * B(I)
J = J + 1
X(I) = S * Y(J)

ENDDO

RETURN

END

• If parallel threads execute different iterations, they can
overwrite each other’s values of S (O-LCD)

• The compiler avoids this problem by providing a
private version of S for each thread

• If the value of S is needed after the loop, the processor
executing the Nth iteration stores its private value in S

• J, a loop induction variable like I, has the same
problem as S (O-LCD) plus is a B-LCD. A private
version of J is provided to each thread and its value is
determined as a function of I:
(J = Jinit + I, where Jinit = J at loop invocation)
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Automatically parallelized loops - cont.

The compiler can handle some scalar LCDs known as
reductions. Generally, a reduction has the form:

X = X operator Y

where:

X - variable not assigned or used elsewhere in the loop
Y - a loop constant expression not involving X
operator is +, -, *, .AND., .OR., .EQV. or .NEQV.

SUBROUTINE MYSUB(A,B,C,D,E,N,SUM)

REAL*8 A(N),B(N),C(N),D(N),E(N),SUM
INTEGER*4 N

DO I = 1, N
A(I) = E(I) / C(I)
SUM = SUM + A(I) * B(I) !reduction
D(I) = A(I) / B(I)

ENDDO

RETURN
END

• If parallel threads execute different iterations, they can
overwrite each other’s values of SUM (O-LCD)

• The compiler avoids this problem by providing a
private version of SUM for each thread in which each
thread’s partial sum is computed. The private SUMs
are added to compute final SUM by the compiler.
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Automatically parallelized loops - cont.

The compiler also recognizes scalar reductions of the
form:

X = function (X, Y)

where:

X - variable not assigned or used elsewhere in the loop
Y - a loop constant expression not involving X
function is the intrinsic MAX or MIN function

SUBROUTINE MYSUB(A,B,C,D,E,N)

REAL*8 A(N),B(N),C(N),D(N),E(N)
REAL*8 MAX, X
INTEGER*4 N

X = 0.0

DO I = 1, N
A(I) = E(I) / C(I)
X = MAX(X,A(I)) !reduction
D(I) = A(I) / B(I)

ENDDO
RETURN
END

• If parallel threads execute different iterations, they can
overwrite each other’s values of X (O-LCD)

• The compiler provides a private version of X for each
thread. Thread 0 uses private Xs to set original X.
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Automatically parallelized loops - cont.

Even entire arrays can be privatized as needed for the
array Q in order to parallelize the J loop in the example
below:

SUBROUTINE MYSUB(U,M)

PARAMETER (N = 99)

REAL*4 P(N), Q(N), R(N), U(M), T(N,M)

DO J = 1, M
DO I = 1, N

Q(I) = P(I) * R(I)
T(I,J) = Q(I) * U(J)

ENDDO
ENDDO

RETURN

END

• If parallel threads execute different iterations of J, they
can overwrite each other’s values of Q(I) (O-LCD)

• The compiler avoids this problem by providing a
private version of the Q array for each thread, since it
knows Q’s size at compile time

• Parallelized, each thread sets a unique subarray of T

• Compiler also provides a private version of I for each
thread
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Automatically parallelized loops - cont.

SUBROUTINE MYSUB

PARAMETER (M = 50, N = 10)

REAL*4 X(100,100), Y(100,100)

Y(2:M+1:2, 2:N+1) = 1.0
X(1:M:2, 1:N) = Y(2:M+1:2, 2:N+1)

RETURN

END

The above Fortran 90 array assignments will
automatically parallelize, creating 2 parallel loops,
since by definition there are no dependencies.
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Exercises

[1] Can the compiler automatically parallelize any of these loops?

(a) DO I = 1, N
J = J + 1
A(I) = B(J)

ENDDO

(b) DO I = 1, N
IF (A(I) .LT. 0.0) THEN

J = J + 1
A(I) = B(J)

ENDIF
ENDDO

(c) DO WHILE (A(I) .LT. Z)
I = I + 1
A(I) = B(I)

ENDDO

(d) DO WHILE (I .LT. N)
I = I + 1
A(I) = B(I)

ENDDO

(e) DO I = 1, N
S = C(I) * B(I)
IF (S .GT. 0.D0) THEN

T = S + 5.D0
ELSE

T = S + 4.D0
ENDIF
A(I) = A(I) + T

ENDDO

(f) DO I = 1, N
A(J(I)) = A(K(I)) + 1

ENDDO


