
Formal Methods for Distributed Systems

An Introduction

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at 1/44

1. A Client/Server System

2. Modeling Concurrent Systems

3. Specifying System Properties

4. Verifying System Properties

Wolfgang Schreiner http://www.risc.jku.at 2/44

A Client/Server System

ServerClient(1)
request

answer
Client(2)

request

answer

System of one server and two clients.

Three concurrently executing system components.

Server manages a resource.

An object that only one system component may use at any time.

Clients request resource and, having received an answer, use it.

Server ensures that not both clients use resource simultaneously.
Server eventually answers every request.

Set of system requirements.

Wolfgang Schreiner http://www.risc.jku.at 3/44

System Implementation (Pseudo-Code)

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

sender := receiveRequest()

if sender = given then

if waiting = 0 then

given := 0

else

given := waiting; waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

given := sender

sendAnswer(given)

else

waiting := sender

endif

endloop

end Server

Client(ident):

param ident

begin

loop

...

sendRequest()

receiveAnswer()

... // critical region

sendRequest()

endloop

end Client

Wolfgang Schreiner http://www.risc.jku.at 4/44

Simulating the System Execution

client:1
4

client:2
8

server:3
10

1!MESSAGE

16

20
3!MESSAGE

22

2!MESSAGE

32

35
1!MESSAGE

43

44
4!MESSAGE

49

51
1!MESSAGE

63

64
2!MESSAGE

72

Just one execution, infinitely many are possible!
Wolfgang Schreiner http://www.risc.jku.at 5/44

Desired System Properties

Property: mutual exclusion.
At no time, both clients are in critical region.

Critical region: program region after receiving resource from server
and before returning resource to server.

The system shall only reach states, in which mutual exclusion holds.

Property: no starvation.

Always when a client requests the resource, it eventually receives it.
Always when the system reaches a state, in which a client has
requested a resource, it shall later reach a state, in which the client
receives the resource.

Problem: each system component executes its own program.

Multiple program states exist at each moment in time.
Total system state is combination of individual program states.
Not easy to see which system states are possible.

How can we verify that the system has the desired properties?
Wolfgang Schreiner http://www.risc.jku.at 6/44

1. A Client/Server System

2. Modeling Concurrent Systems

3. Specifying System Properties

4. Verifying System Properties

Wolfgang Schreiner http://www.risc.jku.at 7/44

System States

At each moment in time, a system is in a particular state.

A state s : Var → Val
A state s is a mapping of every system variable x to its value s(x).

Typical notation: s = [x = 0, y = 1, . . .] = [0, 1, . . .].

Var . . . the set of system variables
Program variables, program counters, . . .

Val . . . the set of variable values.

The state space State = {s | s : Var → Val}
The state space is the set of possible states.

The system variables can be viewed as the coordinates of this space.

The state space may (or may not) be finite.

If |Var | = n and |Val | = m, then |State| = mn.
A word of log2 m

n bits can represent every state.

A system execution can be described by a path s0 → s1 → s2 → . . . in
the state space.

Wolfgang Schreiner http://www.risc.jku.at 8/44

Deterministic Systems

In a sequential system, each state typically determines its successor state.

The system is deterministic.
We have a (possibly not total) transition function F on states.
s1 = F (s0) means “s1 is the successor of s0”.

Given an initial state s0, the execution is thus determined.
s0 → s1 = F (s0) → s2 = F (s1) → . . .

A deterministic system (model) is a pair 〈I ,F 〉.
A set of initial states I ⊆ State

Initial state condition I (s) :⇔ s ∈ I

A transition function F : State
partial
→ State.

A run of a deterministic system 〈I ,F 〉 is a (finite or infinite)
sequence s0 → s1 → . . . of states such that

s0 ∈ I (respectively I (s0)).
si+1 = F (si) (for all sequence indices i)
If s ends in a state sn, then F is not defined on sn.

Wolfgang Schreiner http://www.risc.jku.at 9/44

Nondeterministic Systems

In a concurrent system, each component may change its local state, thus
the successor state is not uniquely determined.

The system is nondeterministic.
We have a transition relation R on states.
R(s0, s1) means “s1 is a (possible) successor of s0.

Given an initial state s0, the execution is not uniquely determined.
Both s0 → s1 → . . . and s0 → s ′1 → . . . are possible.

A non-deterministic system (model) is a pair 〈I ,R〉.
A set of initial states (initial state condition) I ⊆ State.
A transition relation R ⊆ State × State.

A run s of a nondeterministic system 〈I ,R〉 is a (finite or infinite)
sequence s0→s1→s2 . . . of states such that

s0 ∈ I (respectively I (s0)).
R(si , si+1) (for all sequence indices i).
If s ends in a state sn, then there is no state t such that R(sn, t).

Wolfgang Schreiner http://www.risc.jku.at 10/44

Reachability Graph

The transitions of a system can be visualized by a graph.

s1

s0

s2

The nodes of the graph are the reachable states of the system.

Wolfgang Schreiner http://www.risc.jku.at 11/44

Example: Digital Circuits

Synchronous composition of hardware components.

A modulo 8 counter C = 〈IC ,RC 〉.

State := N2 × N2 × N2.

IC (v0, v1, v2) :⇔ v0 = v1 = v2 = 0.

RC (〈v0, v1, v2〉, 〈v
′

0, v
′

1, v
′

2〉) :⇔
R0(v0, v

′

0) ∧
R1(v0, v1, v

′

1) ∧
R2(v0, v1, v2, v

′

2).

R0(v0, v
′

0) :⇔ v ′

0 = ¬v0.
R1(v0, v1, v

′

1) :⇔ v ′

1 = v0 ⊕ v1.

R2(v0, v1, v2, v
′

2) :⇔ v ′

2 = (v0 ∧ v1)⊕ v2.

Edmund Clarke et al: “Model Checking”, 1999.

Wolfgang Schreiner http://www.risc.jku.at 12/44

Example: Concurrent Software

Asynchronous composition of software components with shared variables.

P :: l0 : while true do
NC 0 : wait turn = 0
CR0 : turn := 1

end

|| Q :: l1 : while true do
NC 1 : wait turn = 1
CR1 : turn := 0

end

A mutual exclusion program M = 〈IM ,RM〉.
State := PC × PC × N2. // shared variable
IM(p, q, turn) :⇔ p = l0 ∧ q = l1.

RM(〈p, q, turn〉, 〈p′, q′, turn′〉) :⇔
(P(〈p, turn〉, 〈p′, turn′〉) ∧ q′ = q) ∨ (Q(〈q, turn〉, 〈q′, turn′〉) ∧ p′ = p).

P(〈p, turn〉, 〈p′, turn′〉) :⇔
(p = l0 ∧ p′ = NC0 ∧ turn′ = turn) ∨
(p = NC0 ∧ p′ = CR0 ∧ turn = 0 ∧ turn′ = turn) ∨
(p = CR0 ∧ p′ = l0 ∧ turn′ = 1).

Q(〈q, turn〉, 〈q′, turn′〉) :⇔
(q = l1 ∧ q′ = NC1 ∧ turn′ = turn) ∨
(q = NC1 ∧ q′ = CR1 ∧ turn = 1 ∧ turn′ = turn) ∨
(q = CR1 ∧ q′ = l1 ∧ turn′ = 0).

Wolfgang Schreiner http://www.risc.jku.at 13/44

Example: Concurrent Software

Edmund Clarke et al: “Model Checking”, 1999.

Model guarantees mutual exclusion.
Wolfgang Schreiner http://www.risc.jku.at 14/44

1. A Client/Server System

2. Modeling Concurrent Systems

3. Specifying System Properties

4. Verifying System Properties

Wolfgang Schreiner http://www.risc.jku.at 15/44

Motivation

We need a language for specifying system properties.

s1

s0

s2

A system S is a pair 〈I ,R〉.
Initial states I , transition relation R .
More intuitive: reachability graph.

Starting from an initial state s0, the system runs evolve.

Consider the reachability graph as an infinite computation tree.
Different tree nodes may denote occurrences of the same state.

Each occurrence of a state has a unique predecessor in the tree.

Every path in this tree is infinite.

Every finite run s0 → . . . → sn is extended to an infinite run
s0 → . . . → sn → sn → sn → . . .

Or simply consider the graph as a set of system runs.

Same state may occur multiple times (in one or in different runs).

We need to talk about such trees respectively sets of system runs.
Wolfgang Schreiner http://www.risc.jku.at 16/44

Computation Trees versus System Runs

Edmund Clarke et al: “Model Checking”, 1999.

Set of system runs:
[a, b] → c → c → . . .

[a, b] → [b, c] → c → . . .

[a, b] → [b, c] → [a, b] → . . .

[a, b] → [b, c] → [a, b] → . . .

. . .

Wolfgang Schreiner http://www.risc.jku.at 17/44

Temporal Logic

Extension of classical logic to reason about multiple states.

Temporal logic is an instance of modal logic.
Logic of “multiple worlds (situations)” that are in some way related.
Relationship may e.g. be a temporal one.
Amir Pnueli, 1977: temporal logic is suited to system specifications.
Many variants, two fundamental classes.

Branching Time Logic
Semantics defined over computation trees.

At each moment, there are multiple possible futures.

Prominent variant: CTL.
Computation tree logic; a propositional branching time logic.

Linear Time Logic
Semantics defined over sets of system runs.

At each moment, there is only one possible future.

Prominent variant: PLTL.
A propositional linear time logic.

Wolfgang Schreiner http://www.risc.jku.at 18/44

State Formula

Temporal logic is based on classical logic.

A state formula F is evaluated on a state s.

Any predicate logic formula is a state formula:
p(x),¬F ,F0 ∧ F1,F0 ∨ F1,F0 ⇒ F1,F0 ⇔ F1, ∀x : F , ∃x : F .
In propositional temporal logic only propositional logic formulas are
state formulas (no quantification):
p,¬F ,F0 ∧ F1,F0 ∨ F1,F0 ⇒ F1,F0 ⇔ F1.

Semantics: s |= F (“F holds in state s”).
Example: semantics of conjunction.

(s |= F0 ∧ F1) :⇔ (s |= F0) ∧ (s |= F1).
“F0 ∧ F1 holds in s if and only if F0 holds in s and F1 holds in s”.

Classical logic reasons on individual states.

Wolfgang Schreiner http://www.risc.jku.at 19/44

Linear Time Logic (LTL)

We use temporal logic to specify a system property P .

Core question: S |= P (“P holds in system S”).

System S = 〈I ,R〉, temporal logic formula P .

Linear time logic:

S |= P :⇔ r |= P , for every run r of S .
Property P must be evaluated on every run r of S .
Given a computation tree with root s0, P is evaluated on every path
of that tree originating in s0.

If P holds for every path, P holds on S .

LTL formulas are evaluated on system runs.

Wolfgang Schreiner http://www.risc.jku.at 20/44

Formulas

No path quantifiers; all formulas are path formulas.

Every formula is evaluated on a path p.
Also every state formula f of classical logic (see below).
Let F and G denote formulas.
Then also the following are formulas:

X F (“next time F”), often written #F ,
G F (“always F”), often written 2F ,
F F (“eventually F”), often written 3F ,
F U G (“F until G”).

Semantics: p |= P (“P holds in path p”).
pi := 〈pi , pi+1, . . .〉.

p |= f :⇔ p0 |= f .
p |= X F :⇔ p1 |= F .
p |= G F :⇔ ∀i ∈ N : pi |= F .
p |= F F :⇔ ∃i ∈ N : pi |= F .
p |= F U G :⇔ ∃i ∈ N : pi |= G ∧ ∀j ∈ Ni : p

j |= F .

Wolfgang Schreiner http://www.risc.jku.at 21/44

Formulas

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.

Wolfgang Schreiner http://www.risc.jku.at 22/44

Frequently Used LTL Patterns

In practice, most temporal formulas are instances of particular patterns.

Pattern Pronounced Name

2F always F invariance
3F eventually F guarantee
23F F holds infinitely often recurrence
32F eventually F holds permanently stability
2(F ⇒ 3G) always, if F holds, then response

eventually G holds
2(F ⇒ (G U H)) always, if F holds, then precedence

G holds until H holds

Typically, there are at most two levels of nesting of temporal operators.

Wolfgang Schreiner http://www.risc.jku.at 23/44

Examples

Mutual exclusion: 2¬(pc1 = C ∧ pc2 = C).

Alternatively: ¬3(pc1 = C ∧ pc2 = C).
Never both components are simultaneously in the critical region.

No starvation: ∀i : 2(pc i = W ⇒ 3pc i = R).

Always, if component i waits for a response, it eventually receives it.

No deadlock: 2¬∀i : pc i = W .

Never all components are simultaneously in a wait state W .

Precedence: ∀i : 2(pc i 6= C ⇒ (pc i 6= C U lock = i)).

Always, if component i is out of the critical region, it stays out until it
receives the shared lock variable (which it eventually does).

Partial correctness: 2(pc = L ⇒ C).

Always if the program reaches line L, the condition C holds.

Termination: ∀i : 3(pc i = T).

Every component eventually terminates.

Wolfgang Schreiner http://www.risc.jku.at 24/44

Classifying System Properties

Safety Properties:
A safety property is a property such that, if it is violated by a run, it
is already violated by some finite prefix of the run.

This finite prefix cannot be extended in any way to a complete run
satisfying the property.

Example: 2F .
The violating run F → F → ¬F → . . . has the prefix F → F → ¬F
that cannot be extended in any way to a run satisfying 2F .

Liveness Properties:
A liveness property is a property such that every finite prefix can be
extended to a complete run satisfying this property.

Only a complete run itself can violate that property.

Example: 3F .
Any finite prefix p can be extended to a run p → F → . . . which
satisfies 3F .

Every system property P is a conjunction S ∧ L of some safety property S

and some liveness property L (both may be just “true”).
Wolfgang Schreiner http://www.risc.jku.at 25/44

Verifying Liveness

Example: verify that eventually some state property holds.

var x := 0, y := 0
loop

x := x + 1
|| loop

y := y + 1

State = N× N; Label = {p, q}.
I (x , y) :⇔ x = 0 ∧ y = 0.
R(l , 〈x , y〉, 〈x ′

, y ′〉) :⇔
(l = p ∧ x ′ = x + 1 ∧ y ′ = y) ∨ (l = q ∧ x ′ = x ∧ y ′ = y + 1).

Prove 〈I ,R〉 |= 3x = 1.

[x = 0, y = 0] → [x = 0, y = 1] → [x = 0, y = 2] → . . .

This run violates (as the only one) 3x = 1.
Thus the system as a whole does not satisfy 3x = 1.

For verifying liveness properties, “unfair” runs have to be ruled out.
Wolfgang Schreiner http://www.risc.jku.at 26/44

Weak Fairness

Weak Fairness

A run s0
l0→ s1

l1→ s2
l2→ . . . is weakly fair to a transition l , if

if transition l is eventually permanently enabled in the run,

then transition l is executed infinitely often in the run.

(∃i : ∀j ≥ i : EnabledR(l , sj)) ⇒ (∀i : ∃j ≥ i : lj = l).

LTL formulas may explicitly specify weak fairness constraints.

Let El denote the enabling condition of transition l .
Let Xl denote the predicate “transition l is executed”.
Define WF l :⇔ (32El) ⇒ (23Xl).

If l is eventually enabled forever, it is executed infinitely often.

Prove 〈I , S〉 |= (WF l ⇒ P).

Property P is only proved for runs that are weakly fair to l .

A weak requirement to the fairness of a system.

Wolfgang Schreiner http://www.risc.jku.at 27/44

Example

var x := 0, y := 0
loop

x := x + 1
|| loop

y := y + 1

State = N× N; Label = {p, q}.
I (x , y) :⇔ x = 0 ∧ y = 0.
R(l , 〈x , y〉, 〈x ′

, y ′〉) :⇔
(l = p ∧ x ′ = x + 1 ∧ y ′ = y) ∨ (l = q ∧ x ′ = x ∧ y ′ = y + 1).

Prove 〈I ,R〉 |= WFp ⇒ 3x = 1.

Run [x = 0, y = 0] → [x = 0, y = 1] → [x = 0, y = 2] → . . .

Run is not weakly fair to p, need not be considered.

Violating run can be ruled out by demanding weak fairness.

Wolfgang Schreiner http://www.risc.jku.at 28/44

1. A Client/Server System

2. Modeling Concurrent Systems

3. Specifying System Properties

4. Verifying System Properties

Wolfgang Schreiner http://www.risc.jku.at 29/44

The Model Checker Spin

Spin system:

Gerard J. Holzmann et al, Bell Labs, 1980–.
Freely available since 1991.
Workshop series since 1995 (12th workshop “Spin 2005”).
ACM System Software Award in 2001.

Spin resources:

Web site: http://spinroot.com.
Survey paper: Holzmann “The Model Checker Spin”, 1997.
Book: Holzmann “The Spin Model Checker — Primer and Reference
Manual”, 2004.

Goal: verification of (concurrent/distributed) software models.

Wolfgang Schreiner http://www.risc.jku.at 30/44

The Model Checker Spin

On-the-fly LTL model checking of finite state systems.

System S modeled by automaton SA.

Explicit representation of automaton states.

On-the-fly model checking.

Reachable states of SA are only expended on demand.

LTL model checking.
Property P to be checked described in PLTL.

Propositional linear temporal logic.

Description converted into property automaton PA.

Automaton accepts only system runs that do not satisfy the property.

Model checking based on automata theory.

Wolfgang Schreiner http://www.risc.jku.at 31/44

The Spin System Architecture

Wolfgang Schreiner http://www.risc.jku.at 32/44

Features of Spin

System description in Promela.
Promela = Process Meta-Language.

Spin = Simple Promela Interpreter.

Express coordination and synchronization aspects of a real system.
Actual computation can be e.g. handled by embedded C code.

Simulation mode.

Investigate individual system behaviors.
Inspect system state.
Graphical interface XSpin for visualization.

Verification mode.

Verify properties shared by all possible system behaviors.
Properties specified in PLTL and translated to “never claims”.

Promela description of automaton for negation of the property.

Generated counter examples may be investigated in simulation mode.

Verification and simulation are tightly integrated in Spin.
Wolfgang Schreiner http://www.risc.jku.at 33/44

The Client/Server System in Promela

/* definition of a constant MESSAGE */

mtype = { MESSAGE };

/* two arrays of channels of size 2,

each channel has a buffer size 1 */

chan request[2] = [1] of { mtype };

chan answer [2] = [1] of { mtype };

/* the system of three processes */

init

{

run client(1);

run client(2);

run server();

}

/* the client process type */

proctype client(byte id)

{

do :: true ->

request[id-1] ! MESSAGE;

W: answer[id-1] ? MESSAGE;

C: skip; // the critical region

request[id-1] ! MESSAGE

od;

}

Wolfgang Schreiner http://www.risc.jku.at 34/44

The Client/Server System in Promela

/* the server process type */

proctype server()

{

/* three variables of two bit each */

unsigned given : 2 = 0;

unsigned waiting : 2 = 0;

unsigned sender : 2;

do :: true ->

/* receiving the message */

R: if

:: request[0] ? MESSAGE ->

S1: sender = 1

:: request[1] ? MESSAGE ->

S2: sender = 2

fi;

/* answering the message */

if

:: sender == given ->

if

:: waiting == 0 ->

given = 0

:: else ->

given = waiting;

waiting = 0;

answer[given-1] ! MESSAGE

fi;

:: given == 0 ->

given = sender;

answer[given-1] ! MESSAGE

:: else

waiting = sender

fi;

od;

}

Wolfgang Schreiner http://www.risc.jku.at 35/44

Specifying a System Property

Formal specification of the “mutual exclusion” property.
Wolfgang Schreiner http://www.risc.jku.at 36/44

Spin LTL

Grammar:

ltl ::= opd | (ltl) | ltl binop ltl | unop ltl

Operands (opd):

true, false, and user-defined names starting with a lower-case letter

Unary Operators (unop):

[] (the temporal operator always)

<> (the temporal operator eventually)

! (the boolean operator for negation)

Binary Operators (binop):

U (the temporal operator strong until)

V (the dual of U): (p V q) means !(!p U !q))

&& (the boolean operator for logical and)

|| (the boolean operator for logical or)

/\ (alternative form of &&)

\/ (alternative form of ||)

-> (the boolean operator for logical implication)

<-> (the boolean operator for logical equivalence)

Wolfgang Schreiner http://www.risc.jku.at 37/44

Spin Atomic Predicates

#define p (a > b)

#define q (len(q) < 5)

#define r (process@Label)

#define s (process[pid]@Label)

PROMELA conditions with references to global system variables.

len(q): the number of messages in channel q.
process@Label : true if the execution of the process with process type
process is in the state marked by Label.
process[pid]@Label : true if the execution of the process with type
process and process identifier pid is in the state marked by Label.

First instantiated process receives process identifier 1.

Atomic predicates can describe arbitrary state conditions.

Wolfgang Schreiner http://www.risc.jku.at 38/44

Spin Verification Output

(Spin Version 4.2.2 -- 12 December 2004)

+ Partial Order Reduction

Full statespace search for:

never claim +

assertion violations + (if within scope of claim)

acceptance cycles + (fairness disabled)

invalid end states - (disabled by never claim)

State-vector 48 byte, depth reached 477, errors: 0

499 states, stored

395 states, matched

894 transitions (= stored+matched)

0 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

...

0.00user 0.01system 0:00.01elapsed 83%CPU (0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (0major+737minor)pagefaults 0swaps

Wolfgang Schreiner http://www.risc.jku.at 39/44

Verifying the System Property

(Spin Version 4.2.2 -- 12 December 2004)

+ Partial Order Reduction

Full statespace search for:

never claim +

assertion violations + (if within scope of claim)

acceptance cycles + (fairness disabled)

invalid end states - (disabled by never claim)

State-vector 48 byte, depth reached 477, errors: 0

499 states, stored

395 states, matched

894 transitions (= stored+matched)

0 atomic steps

hash conflicts: 0 (resolved)

...

No possible execution violates the “mutual exclusion” property.
Wolfgang Schreiner http://www.risc.jku.at 40/44

The Implementation of Spin

Translation of the original problem to a problem in automata theory.

Original problem: S |= P .

S = 〈I ,R〉, PLTL formula P .
Does property P hold for every run of system S?

Construct system automaton SA with language L(SA).
A language is a set of infinite words.
Each such word describes a system run.
L(SA) describes the set of runs of S .

Construct property automaton PA with language L(PA).

L(PA) describes the set of runs satisfying P .

Equivalent Problem: L(SA) ⊆ L(PA).

The language of SA must be contained in the language of PA.

There exists an efficient algorithm to solve this problem.

Wolfgang Schreiner http://www.risc.jku.at 41/44

The Model Checking Algorithm

Problem: L(SA) ⊆ L(PA)

Equivalent to: L(SA) ∩ L(PA) = ∅.
Complement L := {w : w 6∈ L}.

Equivalent to: L(SA) ∩ L(¬PA) = ∅.

L(A) = L(¬A).

Equivalent Problem: L(SA) ∩ L((¬P)A) = ∅.
Define the synchronized product automaton A⊗ B.

A transition of A⊗B represents a simultaneous transition of A and B.

Property: L(A) ∩ L(B) = L(A ⊗ B).

Final Problem: L(SA ⊗ (¬P)A) = ∅.
We have to check whether the language of this automaton is empty.
We have to search for a word w accepted by this automaton.

If no such w exists, then S |= P.
If such a w exists, it identifies a counterexample run, i.e. a run r of S
such that r 6|= P.

Wolfgang Schreiner http://www.risc.jku.at 42/44

Complexity of the Search

The complexity of checking S |= P is as follows.

Let |P | denote the number of subformulas of P .

|State(¬P)A | = O(2|P|).

|StateA⊗B | = |StateA| · |StateB |.

|StateSA⊗(¬P)A | = O(|StateSA | · 2
|P|)

The time complexity of the search is linear in the size of the state
space of the system automaton.

Actually, in the number of reachable states (typically much smaller).

PLTL model checking is linear in the number of reachable states but
exponential in the size of the formula.

Wolfgang Schreiner http://www.risc.jku.at 43/44

Verifying Concurrent Systems

Other approaches/tools to system verification exist.

Model checking:
Symbolic Model Checking: SMV, NuSMV, . . .

Systems and properties are modelled as binary decision diagrams
(BDDs).

Bounded Model Checking: NuSMV2, . . .
Model checking is reduced to checking the satisfiability of
propositional formulas.

Counter-Example Guided Abstraction Refinement: BLAST, SLAM.
Abstract model is iteratively checked and refined; in principle also
applicable to infinite state systems.

Theorem proving:
Theorem proving assistants: PVS, Isabelle, Coq, the RISC
ProofNavigator, . . .
Not fully automatic, system invariants have to be established.
Complexity of verification independent of size of state space, also
applicable to infinite state systems.

Wolfgang Schreiner http://www.risc.jku.at 44/44

	A Client/Server System
	Modeling Concurrent Systems
	Specifying System Properties
	Verifying System Properties

