SRC Technical Note 1994-001

December 16, 1994

Introduction to TLA

Leslie Lamport

Systems Research Center 130 Lytton Avenue Palo Alto, California 94301 http://www.research.digital.com/SRC/

Copyright ©Digital Equipment Corporation 1997. All rights reserved

A Simple Example

We begin by specifying a system that starts with x equal to 0 and keeps incrementing x by 1 forever. In a conventional programming language, this might be written

initially x = 0; loop forever x := x + 1 end loop

The TLA specification is a formula Π defined as follows, where the meaning of each conjunct is indicated by the comments.

Π	$\stackrel{\Delta}{=}$	(x=0)	Initially, x equals 0.
		$\wedge \ \Box[x'=x+1]_x$	Always (\Box) , the value of x in the next state (x') equals its value in the current
			state (x) plus 1. Ignore the subscript x for now.
		$\wedge \ \mathrm{WF}_x(x' = x + 1)$	Ignore this for now.

As specifications get more complicated, we need better methods of writing formulas. We use lists of formulas bulleted with \wedge and \vee to denote conjunctions and disjunctions, and we use indentation to eliminate parentheses. The definition of Π can then be written as

$$\Pi \triangleq \wedge x = 0 \\ \wedge \Box [x' = x + 1]_x \\ \wedge \operatorname{WF}_x(x' = x + 1)$$

What a Formula Means

A TLA formula is true or false on a *behavior*, which is a sequence of *states*, where a state is an assignment of values to variables. Formula Π is true on a behavior in which the *i*th state assigns the value i - 1 to x, for $i = 1, 2, \ldots$

Systems are real; behaviors are mathematical objects. To decide if a system S satisfies formula Π , we must first have a way of representing an execution of S as a behavior (a sequence of states). Given such a representation, we say that system S satisfies formula Π (or that S implements the specification Π) iff (if and only if) Π is true for every behavior corresponding to a possible execution of S.

Another Example

Next, we specify a system that starts with x and y both equal to 0 and repeatedly increments x and y by 1. A step increments either x or y (but not both). The variables are incremented in arbitrary order, but each is incremented infinitely often. This system might be represented in a conventional programming language as

```
initially x = 0, y = 0;
cobegin
loop forever x := x + 1 end loop \parallel
loop forever y := y + 1 end loop
coend
```

The TLA specification is the formula Φ , defined as follows. For convenience, we first define two formulas \mathcal{X} and \mathcal{Y} , and then define Φ in terms of \mathcal{X} and \mathcal{Y} .

Formulas \mathcal{X} and \mathcal{Y} are called *actions*. An action is true or false on a *step*, which is a pair of states—an old state, described by unprimed variables, and a new state, described by primed variables.

Implementation and Stuttering

We say that a specification (TLA formula) F implements a specification G iff every system that satisfies F also satisfies G. This is true if every behavior that satisfies F also satisfies G, which means that all behaviors satisfy the formula $F \Rightarrow G$. A formula is said to be *valid* iff it is satisfied by all behaviors. ("All behaviors" means all sequences of states, not just ones that represent the execution of some particular system.) So, F implements G if the formula $F \Rightarrow G$ is valid. Implementation is implication.

A system that repeatedly increments x and y repeatedly increments x. Therefore, specification Φ should implement specification Π . This means that every behavior satisfying Φ should also satisfy Π . Behaviors that satisfy Φ allow steps that increment y and leave x unchanged. Therefore, Π must allow steps that leave x unchanged. That's where the subscript x comes in. For any action (Boolean formula containing constants, variables and primed variables) \mathcal{A} and every state function (expression containing only constants and unprimed variables) f, we define

$$[\mathcal{A}]_f \stackrel{\Delta}{=} \mathcal{A} \lor (f' = f)$$

where f' is the expression obtained by priming all the variables in f. Thus, a step satisfies $[\mathcal{A}]_f$ iff it satisfies \mathcal{A} or it leaves f unchanged. The formula $\Box[\mathcal{A}]_f$ asserts that every step is an \mathcal{A} step (one that satisfies \mathcal{A}) or leaves funchanged. Hence, the conjunct $\Box[x' = x + 1]_x$ of Π does allow steps that leave x unchanged. Such steps are called *stuttering* steps.

In mathematics, the formula $x^2 = x + 1$ is not an assertion about a universe just containing x; it is an assertion about a universe containing all possible variables, including x, y, and z. The formula $x^2 = x + 1$ simply doesn't say anything about y and z. Similarly, formula Π is an assertion about sequences of states, where a state is an assignment of values to all variables, not just to x. Formula Π specifies a system whose execution is described by the changes to x. But a behavior represents a history of some entire universe containing that system. To be a sensible specification, Π must allow stuttering steps in which other parts of the universe change while x remains unchanged.

Similarly, Φ allows steps that leave the pair $\langle x, y \rangle$ unchanged, and therefore leave both x and y unchanged. If we are just observing x and y, then there is no way to tell that such a step has occurred.

Stuttering steps make it unnecessary to consider finite behaviors. An execution in which a system halts is represented by an infinite behavior in which the variables describing that system stop changing after a finite number of steps. When a system halts, it doesn't mean that the entire universe comes to an end. Thus, by a behavior, we mean an infinite sequence of states.

Fairness

Formula $\Box[x' = x + 1]_x$ allows arbitrarily many steps that leave x unchanged. In fact, it is satisfied by a behavior in which x never changes. We want to require that x be incremented infinitely many times, so our specification must rule out behaviors in which x is incremented only a finite number of times. This is accomplished by the WF formula, as we now explain.

An action \mathcal{A} is said to be *enabled* in a state *s* iff there exists some state *t* such that the pair of states (old-state *s*, new-state *t*) satisfies \mathcal{A} . The formula $WF_f(\mathcal{A})$ asserts of a behavior that, if the action $\mathcal{A} \wedge (f' \neq f)$ ever becomes enabled and remains enabled forever, then infinitely many $\mathcal{A} \wedge (f' \neq f)$ steps occur. In other words, if it ever becomes possible and remains forever possible to execute an \mathcal{A} step that changes f, then infinitely many such steps must occur.

Any integer can be incremented by 1 to produce a different integer. Hence, the action $(x' = x + 1) \land (x' \neq x)$ is enabled in any state where x is an integer. The formula $(x = 0) \land \Box [x' = x + 1]_x$, which asserts that x is initially 0 and in every step is either incremented by 1 or left unchanged, implies that x is always an integer. Hence, this formula implies that $(x' = x + 1) \land (x' \neq x)$ is always enabled. Hence, the conjunct $WF_x(x' = x + 1)$ of Π asserts that infinitely many $(x' = x + 1) \land (x' \neq x)$ steps occur. Hence, Π asserts that x is incremented infinitely often, as desired.

Similarly, $(x = 0) \land \Box[\mathcal{X} \lor \mathcal{Y}]_{\langle x,y \rangle}$ implies that x is always an integer, so $\mathcal{X} \land (\langle x,y \rangle' \neq \langle x,y \rangle)$ is always enabled. Hence, Φ implies that x is incremented infinitely often. Every behavior satisfying Φ does satisfy Π , so $\Phi \Rightarrow \Pi$ is valid.

WF stands for Weak Fairness. TLA specifications also use Strong Fairness formulas of the form $SF_f(\mathcal{A})$, where f is a state function and \mathcal{A} an action. This formula asserts that if $\mathcal{A} \wedge (f' \neq f)$ is enabled infinitely often (in infinitely many states of the behavior), then infinitely many $\mathcal{A} \wedge (f' \neq f)$ steps must occur. If an action ever becomes enabled forever, then it is enabled infinitely often. Hence, $SF_f(\mathcal{A})$ implies $WF_f(\mathcal{A})$; strong fairness implies weak fairness.

The subscripts in WF and SF formulas (and in the formula $\Box[\mathcal{N}]_f$) make it syntactically impossible to write a formula that can distinguish whether or not stuttering steps have occurred. In practice, whenever we write a formula of the form WF_f(\mathcal{A}) or SF_f(\mathcal{A}), action \mathcal{A} will imply $f' \neq f$, so any \mathcal{A} step changes f.

Hiding

The formula $\exists y : \Phi$ is satisfied by a behavior iff there is some sequence of values that can be assigned to y which would produce a behavior satisfying Φ . (This definition is only approximately correct; see [2] for the precise definition.) The temporal existential quantifier $\exists y$ is the formal expression of what it means to "hide" the variable y in a specification. If we hide y in a specification asserting that x and y are repeatedly incremented, we get a specification asserting that x is repeatedly incremented. Thus, the specification obtained by hiding y in Φ should be equivalent to Π . Indeed, the formula $\exists y : \Phi$ is equivalent to Π . In other words, the formula $(\exists y : \Phi) \equiv \Pi$ is valid.

Composition

Let \mathcal{X} and \mathcal{Y} be the actions defined above, and let

$$\Pi_{x} \triangleq (x = 0) \land \Box[\mathcal{X}]_{x} \land WF_{\langle x, y \rangle}(\mathcal{X})$$

$$\Pi_{y} \triangleq (y = 0) \land \Box[\mathcal{Y}]_{y} \land WF_{\langle x, y \rangle}(\mathcal{Y})$$

A simple calculation shows that, if x and y are integers, then $[\mathcal{X}]_x \wedge [\mathcal{Y}]_y$ is equivalent to $[\mathcal{X} \vee \mathcal{Y}]_{\langle x, y \rangle}$. It follows from this and the laws of temporal logic that $\Pi_x \wedge \Pi_y$ is equivalent to Φ . We can interpret Π_x and Π_y as the specifications of two processes, one repeatedly incrementing x and the other repeatedly incrementing y, in a program whose variables are x and y. Composing two such processes yields a program, with variables x and y, that repeatedly increments both x and y—the program specified by Φ .

In general, a specification F of a system S describes the behaviors (representing histories) of a universe in which S operates correctly. A specification G of a system T describes behaviors of the same universe in which T operates correctly. Composing S and T means ensuring that both S and T operate correctly in that universe. The behaviors of a universe in which both systems operate correctly are described by the formula $F \wedge G$. Composition is conjunction.

Assumption/Guarantee Specifications

An assumption/guarantee specification asserts that a system operates correctly if the environment does. Let M be a formula asserting that the sys-

tem does what we want it to, and let E be a formula asserting that the environment does what it is supposed to. We would expect the assumption/guarantee specification to be $E \Rightarrow M$, the formula asserting that either M is satisfied (the system behaved as desired) or E is not satisfied (the environment did not behave correctly). However, we instead write the stronger specification $E \xrightarrow{+} M$, which asserts both that E implies M, and that no step can make M false unless E has already been made false. The precise meaning of the formula $E \xrightarrow{+} M$ is given in [1].

All of TLA

TLA is built on a logic of actions, which is a language for writing predicates, state functions, and actions, and a logic for reasoning about them. A predicate is a Boolean expression containing constants and variables; a state function is a nonBoolean expression containing constants and variables; and an action is a Boolean expression containing constants, variables, and primed variables. The complete specification language TLA⁺, described elsewhere, includes such a language.

Syntactically, a TLA formula has one of the following forms:

P	$\Box[\mathcal{A}]_f$	$\Box F$	$\blacksquare x : F$	
$\neg F$	$F \wedge G$	$F \lor G$	$F \Rightarrow G$	$F \equiv G$
$\mathrm{WF}_f(\mathcal{A})$	$\mathrm{SF}_f(\mathcal{A})$	$F \xrightarrow{+} G$	$\Diamond F$	$F \rightsquigarrow G$

where P is a predicate, f is a state function, \mathcal{A} is an action, x is a variable, and F and G are TLA formulas. The last row of formulas can be expressed in terms of the others (and of course, all the Boolean operators can be defined from \neg and \land). The Boolean operators have their usual meanings; the meanings of the other operators are described below.

- P Satisfied by a behavior iff P is true for (the values assigned to variables by) the initial state.
- $\Box[\mathcal{A}]_f$ Satisfied by a behavior iff every step satisfies \mathcal{A} or leaves f unchanged.
- $\Box F$ (*F* is always true.) Satisfied by a behavior iff *F* is true for all suffixes of the behavior.

- $\exists x : F$ Satisfied by a behavior iff there are some values that can be assigned to x to produce a behavior satisfying F. (See [2] for the precise definition.)
- $\operatorname{WF}_{f}(\mathcal{A})$ (Weak fairness of \mathcal{A}) Satisfied by a behavior iff $\mathcal{A} \wedge (f' \neq f)$ is infinitely often not enabled, or infinitely many $\mathcal{A} \wedge (f' \neq f)$ steps occur.
- $\mathrm{SF}_f(\mathcal{A})$ (Strong fairness of \mathcal{A}) Satisfied by a behavior iff $\mathcal{A} \wedge (f' \neq f)$ is only finitely often enabled, or infinitely many $\mathcal{A} \wedge (f' \neq f)$ steps occur.
- $F \xrightarrow{+} G$ Is true for a behavior iff G is true for at least as long as F is. (See [1] for the precise definition.)
- $\Diamond F$ (*F* is eventually true) Defined to be $\neg \Box \neg F$.
- $F \rightsquigarrow G$ (Whenever F is true, G will eventually become true) Defined to be $\Box(F \Rightarrow \Diamond G)$.

References

- Martín Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions on Programming Languages and Systems, 17(3):507-534, May 1995.
- [2] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and Systems, 16(3):872–923, May 1994.