
Inheritance

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at 1/51

Class Hierarchies

Classes represent collections of uniform objects.

In reality, objects come in variants.
Often the variants can be hierarchically classified.

Animal

Fish Reptile Mammal

Predator Rodent

Bear Cat

Hoofed Animal

Wolf Mouse Rat

A bear is a predator, is a mammal, is an animal.
Wolfgang Schreiner http://www.risc.jku.at 2/51

Parent Classes and Child Classes

Two objects may share some features and differ in others.

A wolf and a mouse are both mammals.

Both wolves and mice breastfeed their offspring.

A wolf is a predator while a mouse is a rodent.

A wolf eats animals.
A mouse eats corn.

“Mammal” is the parent of children “predator” and “rodent”.

Predators and rodents are both mammals, but of a different kind.

Object-oriented languages like C++ offer a similar organization of
classes; their objects satisfy corresponding properties.

Wolfgang Schreiner http://www.risc.jku.at 3/51

1. Deriving Classes from Base Classes

2. Generic Methods and Types

3. Virtual Functions and Overriding

4. Abstract Classes, Interfaces, Frameworks

Wolfgang Schreiner http://www.risc.jku.at 4/51

Example: An Internet Shop

The shop offers as articles both books and CDs.

Books:

Article number, title, price.
Author, publisher, ISBN number.

CDs:

Article number, title, price.
Interpreter, list of songs.

A shopping cart shall list the number, title, and price of the selected
articles; by clicking on an article the full information is displayed.

Wolfgang Schreiner http://www.risc.jku.at 5/51

Base Class

The common article functionality may be extracted to a base class.

class Article {
private:

char* number;

char* title;

int price;

public:

Article(...): ... { }
char* getNumber() const { return number; }
char* getTitle() const { return title; }
int getPrice() const { return price; }

};

Books and CDs are special cases of articles.

Wolfgang Schreiner http://www.risc.jku.at 6/51

Derived Class

Special functionality may be added to the common functionality.

class Book : public Article { // Book is derived from Article

private:

char* author;

char* publisher;

char* ISBN;

public:

Book(...): ... { }
char* getAuthor() const { return author; }
char* getPublisher() const { return publisher; }
char* getISBN() const { return ISBN; }

};

Class Book inherits all features of Article.

Wolfgang Schreiner http://www.risc.jku.at 7/51

Inheritance

Derived classes inherit from their base classes.

class Derived : public Base, ... {
...

};

Class Derived is derived from Base.
Base is the (direct) base class of Derived.
Derived classes are also called “subclasses” or “child” classes.
Base classes are also called “superclasses” or “parent” classes.

Class Derived inherits from Base.
All data members and object functions of Base.
Can access them like its own except those declared private.

Inheritance is transitive.
Derived inherits also from its indirect base classes, i.e. from the base
class of Base, from the base class of the base class, and so on.

A derived class inherits from all its ancestor classes.
Wolfgang Schreiner http://www.risc.jku.at 8/51

Access Specifiers

Base classes may be provided with an access specifier.

class Derived : public Base , ... { ... }
class Derived : protected Base , ... { ... }
class Derived : private Base , ... { ... }
class Derived : Base , ... { ... }

Restricts access to members of Base for the children of Derived :

public: all access specifiers in Base preserve their meaning.
protected: public members of Base become protected.
private: all members of Base become private.

Default is private for class.

public for struct.

Typically, simply public inheritance is applied.

Wolfgang Schreiner http://www.risc.jku.at 9/51

Derived Classes

A class may have multiple children.

class CD : public Article { // CD is derived from Article

private:

char* interpreter;

char*[] songs;

public:

CD(...): ... { }
char* getInterpreter() const { return interpreter; }
char*[] getSongs() const { return songs; }

};

Also CD inherits all features of Article.

Wolfgang Schreiner http://www.risc.jku.at 10/51

Inheritance Hierarchy

Hardcover

CD

char* interpreter
char*[] songs

CD(...)
char* getInterpreter()
char* getSongs()

Paperback

...... ...

Article

char* number

Article(...)
char* getNumber()
char* getTitle()
int getPrice()

char* title

Book

char* author

char* ISBN

Book(...)
char* getAuthor()

char* getISBN()

char* publisher

char* getPublisher()

int price

Wolfgang Schreiner http://www.risc.jku.at 11/51

Multiple Inheritance

In C++, a class may also have multiple parents.

class Derived : public Base1 , public Base2 , ... {
...

};

Derived inherits from Base1, and Base2, and
Object contains separate “subobjects” for each base class.

Name clashes have to be resolved by qualification with base class.
Assume both Base1 and Base2 declare a data member x.
Derived can refer to Base1::x and Base2::x but not just to x.

Thus a directed acyclic inheritance graph can be constructed.
If both Base1 and Base2 have a common ancestor class A, two
separate subobjects of type A are created.

Specifier virtual lets corresponding subobjects be shared.
class Base1 : public virtual A , ... { ... }
class Base2 : public virtual A , ... { ... }

Multiple inheritance may lead to complex class designs; use with care.
Wolfgang Schreiner http://www.risc.jku.at 12/51

Constructors

class Article {
private:

char* number;

char* title;

int price;

public:

Article(char* n, char* t, int p):

number(n), title(t), price(p)

{ }
};

The constructors of a base class are not inherited.

Wolfgang Schreiner http://www.risc.jku.at 13/51

Constructors in Derived Classes

class Book : public Article { // Book is derived from Article

private:

char* author;

char* publisher;

char* ISBN;

public:

Book(char *n, char* t, int p, char *a, char *u, char *i):

Article(n, t, p), author(a), publisher(u), ISBN(i)

{ }
};

A derived class must define its own constructor.

May call (in its initialization list) first a constructor of the base class.
Otherwise, default constructor of base class is called first.

Derived class is responsible for initializing data members of base class.

Wolfgang Schreiner http://www.risc.jku.at 14/51

Copy Assignment Operators

class Article {
...

// this definition is automatically generated

Article& operator=(const Article& a) {
number = a.number; title = a.title; price = a.price;

return *this;

}
};

class Book : public Article { // Book is derived from Article

...

// this definition is automatically generated

Book& operator=(const Book& b) {
Article::operator=(b);

number = a.number; title = a.title; price = a.price;

return *this;

}
};

Also the copy assignment operator of a base class is not inherited.
Wolfgang Schreiner http://www.risc.jku.at 15/51

Inheritance for Code Sharing

Inheritance reduces the amount of code to be written.

Imperative programming:

Whenever there are two or more functions that share common
functionality, this functionality should be put in a separate
function; this function is then called by the other functions.

Object-oriented programming:

Whenever there are two or more classes that share common
functionality, this functionality should be put in a separate base
class; from this base class, the other classes are then derived.

Avoid code duplication among classes by inheritance.

Wolfgang Schreiner http://www.risc.jku.at 16/51

1. Deriving Classes from Base Classes

2. Generic Methods and Types

3. Virtual Functions and Overriding

4. Abstract Classes, Interfaces, Frameworks

Wolfgang Schreiner http://www.risc.jku.at 17/51

Is-RelationShip

Inheritance constructs a subset relationship.

A class denotes the set of objects belonging to the class.

A derived class denotes a subset of the base class.

An object of a derived class is also an object of the base class (and
therefore of any ancestor class).

CDPaperbackHardcover

Book

Article

An object of type Book is also of type Article (but not vice versa).
Wolfgang Schreiner http://www.risc.jku.at 18/51

Type Compatibility

A derived class is compatible with the base class.

Has all data members and member functions of the base class.

General rule:

Wherever an object of a class C is expected, also an object of a class
may be used that is (directly or indirectly) derived from C .

Example: internet shop.

Implement shopping cart that works with object of type Article.
Later derive classes Book, CD, . . . from Article.
Shopping cart can hold objects of type Book, CD,

Inheritance may be used to implement programs that are “generic” i.e.
operate on multiple data types.

Wolfgang Schreiner http://www.risc.jku.at 19/51

Object Assignment

Objects may be assigned to object variables.

void printTitle(Article a) { cout << a.getTitle(); }

Book book("1234", "My Title", 2490,

"My Author", "My Publisher", "12345678");

Article a = book; // copy constructor

a = book; // copy assignment

printTitle(book); // copy constructor

An object of a derived class may be assigned to a variable of a base
(in general: ancestor) class.
By the assignment, the object is sliced.

The additional members of the derived class are removed.

By object slicing, all additional information is lost; while this is
technically legal, it is costly and often denotes a programming error.

Wolfgang Schreiner http://www.risc.jku.at 20/51

Pointer Assignment

Object pointers may be assigned to pointer variables.

void printTitle(Article* a) { cout << a->getTitle(); }

Book* book = new Book("1234", "My Title", 2490,

"My Author", "My Publisher", "12345678");

Article* a = book; // pointer assignment

a = book; // pointer assignment

printTitle(book); // pointer assignment

A pointer to an object of a derived class may be assigned to a
variable whose type is a pointer to the base (ancestor) class.

By the assignment, only the static (compile-time) type information
is lost; the object itself preserves in memory its original identity.

This is the prefered way of writing generic code; objects are not sliced
because only pointers are copied.

Wolfgang Schreiner http://www.risc.jku.at 21/51

Dynamic Casts

After a pointer assignment, the full type identity may be restored.

#define NULL (0)

Article *a = ...;

Book *book = dynamic_cast<Book*>(a);

if (book != NULL) { cout << book->getAuthor(); }

CD *cd = dynamic_cast<CD*>(a);

if (cd != NULL) { cout << cd->getInterpreter(); }

dynamic cast<C*>(p)

Checks whether p points to object of class C (or a subclass of C).
If yes, it returns a pointer of type C* to the object.
If not, a NULL pointer is returned.

Dynamic casts must be explicitly applied for assigning pointers of base
classes to pointer variables of derived classes.

Wolfgang Schreiner http://www.risc.jku.at 22/51

Object/Pointer Assignments

A summary of the possible assignments.

class D : public C { ... };

D d(...);

C c = d; // legal, object is sliced

d = c; // illegal, compiler reports error

D* d = new D(...);

C* c = d; // legal, pointer is copied

d = c; // illegal, compiler reports error

d = dynamic_cast<D*>(c); // legal, result is NULL, if cast fails

The general “is”-relationship only holds in one direction!

Wolfgang Schreiner http://www.risc.jku.at 23/51

Static versus Dynamic Types

An object (or object pointer) variable has two different types.

Static type: the type appearing in the declaration.

. . .
Article* ap = ...;

Determines which members can be accessed.

Dynamic type: the type of the object stored at runtime.

Book* bp = new Book(...);

Article* ap = bp;

May be (directly or indirectly) derived from the static type.
Determines which virtual member functions are called (see later).

While the static type is fixed at compile time, the dynamic type can
change at runtime.

Wolfgang Schreiner http://www.risc.jku.at 24/51

Generic Methods

void printInfo(Article *a) {

cout << "Article" << a->getTitle();

cout << " (" << a->getNumber() << "): ";

int price = a->getPrice();

cout << (price/100) << "." << (price%100) << "Euro\n";

}

Book* book = new Book(...);

CD* cd = new CD(...);

printInfo(book);

printInfo(cd);

Generic methods can operate on arguments of multiple dynamic types.

Wolfgang Schreiner http://www.risc.jku.at 25/51

Generic Types

class ShoppingCart {

...

void add(Article* a);

Article* getArticle(int index);

};

ShoppingCart cart(...);

Book* book = new Book(...);

CD* cd = new CD(...);

cart.add(book);

cart.add(cd);

Article* a = cart.getArticle(0); // may be book or CD

Generic containers can contain elements of multiple dynamic types.

Wolfgang Schreiner http://www.risc.jku.at 26/51

Generic Pointers

The type void* can refer to an object of any class.

class Stack {

int number;

int size;

void** stack;

void resize();

public:

Stack();

int length();

void push(void *e);

void *pop();

void *top();

};

Book *book = new Book(...);

Stack s();

s.push(book);

Book *book0 = reinterpret_cast<Book*>(s.pop());

reinterpret cast<C*>(p)

Similar to dynamic cast.
Can be applied to safely convert between
pointers of unrelated base types.

Generic containers can also hold arbitrary objects.

Wolfgang Schreiner http://www.risc.jku.at 27/51

Generic Pointers

Stack::Stack(): number(0), size(10), stack(new void*[size]) { }

int Stack::length() { return number; }

void* Stack::pop() { number = number-1; return stack[number]; }

void* Stack::top() { return stack[number-1]; }

void Stack::push(void *e) {

if (number == size) resize();

stack[number] = e;

number = number+1;

}

void Stack::resize() {

int size0 = 2*size;

void **stack0 = new void*[size0];

for (int i=0; i<size; i++) stack0[i] = stack[i];

delete[] stack;

size = size0; stack = stack0;

}

Wolfgang Schreiner http://www.risc.jku.at 28/51

1. Deriving Classes from Base Classes

2. Generic Methods and Types

3. Virtual Functions and Overriding

4. Abstract Classes, Interfaces, Frameworks

Wolfgang Schreiner http://www.risc.jku.at 29/51

Declaring Methods in Base Classes

class Article {
private:

char* number;

char* title;

int price;

public:

...

void printInfo();

};

void Article::printInfo() {
cout << "Article" << getTitle();

cout << " (" << getNumber() << "): ";

int price = getPrice();

cout << (price/100) << "." << (price%100) << "Euro\n";
}

Method printInfo is inherited by all classes derived from Article.
Wolfgang Schreiner http://www.risc.jku.at 30/51

Inheriting Methods from Base Classes

Classes Book and CD may use printInfo.

class Book: public Article { ... };
class CD: public Article { ... };

Book* book = new Book(...); book->printInfo();

CD* cd = new CD(...); cd->printInfo();

Article* a1 = book; a1->printInfo();

Article* a2 = cd; a2->printInfo();

Problem: printInfo() is too general.

Only prints generic information on articles.
Does not print information specific to books or CDs.

How to customize printInfo for derived classes?

Wolfgang Schreiner http://www.risc.jku.at 31/51

Virtual Functions

class Base { class Derived : public Base {
virtual T func(...); virtual T func(...); // overrides Base::func()

}; };
T Base::func(...) { ... } T Derived::func(...) { ... }

Base *object = new Base(...); // dynamic type is Base

... object->func(...) ... // calls Base::func()

Base *object = new Derived(...); // dynamic type is Derived

... object->func(...) ... // calls Derived::func()

A function declared as virtual can be overridden.
In a derived class, a function is declared with same name and same
types for parameters and return value.

When a virtual function is called on an object, the function
definition for the dynamic type of the object is executed.

Form of genericity called type polymorphism.

Base function may be still called (e.g. by the overriding function).
object->Base::func(...)

Wolfgang Schreiner http://www.risc.jku.at 32/51

Example

class Article {
...

virtual void printInfo();

};
void Article::printInfo() { ... }

class Book: public Article { class CD: public Article {
char *author; char *interpreter;

virtual void printInfo(); virtual void printInfo();

}; };

void Book::printInfo() { void CD::printInfo() {
Article::printInfo(); Article::printInfo();

cout << author << "\n"; cout << interpreter << "\n";
} }

Book* book = new Book(...); book->printInfo(); // Book::printInfo()

CD* cd = new CD(...); cd->printInfo(); // CD::printInfo()

Article* a1 = book; a1->printInfo(); // Book::printInfo()

Article* a2 = cd; a2->printInfo(); // CD::printInfo()

Overriding functions may use functionality of base function.
Wolfgang Schreiner http://www.risc.jku.at 33/51

Generic Types/Methods

class ShoppingCart {
int number;

Article* articles[];

...

void add(Article* a) { ...; articles[number] = a; ... }

void printArticles() {
for (int i=0; i<number; i++) {
articles[i]->printInfo(); // Book::printInfo() or CD::printInfo()

}
}

};

ShoppingCart cart(...);

Book* book = new Book(...); cart.add(book);

CD* cd = new CD(...); cart.add(cd);

cart.printArticles();

Core of object-oriented programming: generic types/methods call the
methods associated to the dynamic types of their elements/arguments.

Wolfgang Schreiner http://www.risc.jku.at 34/51

Covariant Return Types

The return type of an overriding function may be actually more special
than the return type of the base function.

class Number {
...

virtual Number* add(Number* n);

};

class Fraction : public Number {
...

virtual Fraction* add(Number* n);

};

Pointer/reference to some base type may be replaced by a
pointer/reference to some derived type.

Need not be the type of the class itself.
Only for the return type, not for the argument types!

The signature of the overriding function may be a bit more specific.
Wolfgang Schreiner http://www.risc.jku.at 35/51

Constructors/Destructors

Inside a constructor/destructor, also for virtual functions the definitions
of the current class are applied.

class Base { class Derived: public Base {
virtual void func(); virtual void func();

Base(); Derived();

} }
Base::func() { ... } Derived::func() { ... }
Base::Base() { Derived::Derived() {
func(); // Base::func(); func(); // Derived::func();

} }

Derived object;

When object is constructed, first constructor of base class is called:
Executes Base::func()

Afterwards, constructor of derived class is called:
Executes Derived::func()

Prevents access to still uninitialized part of the object.
Wolfgang Schreiner http://www.risc.jku.at 36/51

Virtual Destructors

By default, the destructor of a class is not virtual.
If an object is deleted, the destructor of its static type is called.

class Base { }; // implicit default destructor

Base* object = new Derived(...);

delete object; // Base::~Base() is called

In most situations, this is not what is wanted/expected.

The compiler may produce a corresponding warning.

A destructor can be declared as virtual in the base class.

Then the destructor of the dynamic type is called.

The destructors of derived classes automatically get virtual.

class Base { virtual ~Base() { ... } ; };
Base* object = new Derived(...);

delete object; // Base::~Derived() is called

For a virtual constructor, an explicit definition must be given.

A class with virtual functions should also have a virtual destructor.
Wolfgang Schreiner http://www.risc.jku.at 37/51

1. Deriving Classes from Base Classes

2. Generic Methods and Types

3. Virtual Functions and Overriding

4. Abstract Classes, Interfaces, Frameworks

Wolfgang Schreiner http://www.risc.jku.at 38/51

Abstract Classes

A virtual function need not have a definition.

// abstract class // concrete class

class Base { class Derived: public Base {
virtual T func(...) = 0; virtual T func(...);

}; };
T Derived::func(...) { ... }

A pure virtual function is declared with the pure specifier “=0”.
Such a function is also called an abstract function.
Need not (but may have) a definition in the current class.

An abstract class has at least one pure virtual function.
Can be used in type declarations but not for object creations.

Base* o = ... ; // legal

... = new Base(); // illegal

A concrete class has no pure virtual functions.
All pure virtual functions of base class must receive definitions.

Base* o = new Derived(); // legal

Abstract classes may serve as static types but not as dynamic ones.
Wolfgang Schreiner http://www.risc.jku.at 39/51

Interfaces

Abstract classes can represent interfaces.

An interface only defines the signature of a data type.
Names and types of the operations on the type.
E.g. an interface IntStack with the usual operations for a stack of
integer values.

A (concrete) class represents an implementation of the data type.
Defines its concrete representation and the concrete realization of the
operations on the type.
E.g. a class ArrayStack representing a stack by an array or a class
ListStack representing a stack by a linked list.

By an interface, we thus get an abstract datatype.
IntStack serves as the static type for all stack objects.
IntArrayStack or IntListStack are only used when new stack
objects are created.

By the use of interfaces, the concrete representation of an abstract
datatype can be easily replaced without modifying the program.

Wolfgang Schreiner http://www.risc.jku.at 40/51

Interfaces

Interfaces represent “shields” for object representations.

member functions
and data members

abstract

implementation

classinterface

functions

implementorsusers

Only the functions of the interface are accessible to users of the object.
Wolfgang Schreiner http://www.risc.jku.at 41/51

An Interface

An interface is an abstract class with only pure virtual functions.

// IntStack.h

class IntStack {

public:

// a virtual dummy destructor

virtual ~IntStack { };

// the operations to be defined by any implementation

virtual bool isEmpty() = 0;

virtual void push(int value) = 0;

virtual int pop() = 0;

virtual int top() = 0;

};

The signature of an abstract datatype “stack of integers”.

Wolfgang Schreiner http://www.risc.jku.at 42/51

An Implementation of the Interface

An interface is implemented by deriving from the abstract class a
concrete class.

// IntArrayStack.h

class IntArrayStack: public IntStack {

private: // representation of the stack

int number; // by an array ’stack’ of length ’size’

int size; // with ’number’ values stored

int* stack;

void resize();

public:

IntArrayStack(); // the concrete constructor

virtual ~IntArrayStack(); // implements IntStack operation

int length(); // not visible in interface

virtual bool isEmpty(); // implements IntStack operation

virtual void push(int e); // implements IntStack operation

virtual int pop(); // implements IntStack operation

virtual int top(); // implements IntStack operation

}

Wolfgang Schreiner http://www.risc.jku.at 43/51

An Implementation of the Interface

// IntArrayStack.cpp

IntArrayStack::IntArrayStack(): number(0), size(10), stack(new int[size]) { }

IntArrayStack::~IntArrayStack() { delete[] stack; }

int IntArrayStack::length() { return number; }

bool IntArrayStack::isEmpty() { return length() == 0; }

int IntArrayStack::pop() { number = number-1; return stack[number]; }

int IntArrayStack::top() { return stack[number-1]; }

void IntArrayStack::push(int e) {

if (number == size) resize();

stack[number] = e;

number = number+1;

}

void IntArrayStack::resize() {

int size0 = 2*size;

int *stack0 = new int[size0];

for (int i=0; i<size; i++) stack0[i] = stack[i];

delete[] stack;

size = size0; stack = stack0;

}
Wolfgang Schreiner http://www.risc.jku.at 44/51

Another Implementation of the Interface

An interface can be implemented by multiple classes.

class IntListStack: public IntStack { // IntListStack.h

private: // stack represented by a

class IntNode; // sequence of linked nodes

IntNode *head;

public:

IntListStack();

virtual ~IntListStack();

virtual bool isEmpty();

virtual void push(int e);

virtual int pop();

virtual int top();

};

class IntListStack::IntNode { // IntListStack.cpp

public:

int value;

IntNode* next;

IntNode(int v, IntNode *n): value(v), next(n) { }

};

Wolfgang Schreiner http://www.risc.jku.at 45/51

Another Implementation of the Interface

// IntListStack.cpp

#define NULL (0)

IntListStack::IntListStack() { head = NULL; }

IntListStack::~IntListStack() { while (head != NULL) pop(); }

bool IntListStack::isEmpty() { return head == NULL; }

void IntListStack::push(int e) { head = new IntNode(e, head); }

int IntListStack::top() { return head->value; }

int IntListStack::pop() {

int result = head->value;

IntNode *next = head->next;

delete head;

head = next;

return result;

}

Wolfgang Schreiner http://www.risc.jku.at 46/51

The Use of the Interface

// a generic function on stacks

public void push(IntStack* s, int n, int v) {

for (int i=0; i<n; i++) s->push(v);

}

int main() { // original program

IntStack* stack = new IntArrayStack();

push(stack, 10, 5); cout << stack.pop();

// cout << stack.length(); // illegal, length() not in interface

delete stack;

}

int main() { // program with new data representation

IntStack* stack = new IntListStack();

push(stack, 10, 5); cout << stack.pop();

delete stack;

}

Use interfaces to make programs independent of data representations.
Wolfgang Schreiner http://www.risc.jku.at 47/51

Application Frameworks

An abstract class need not be just an interface without own functionality.

(Application) framework: an abstract class A that also has some
concrete functions.

The concrete functions provide actual application functionality.
The abstract functions are “hooks” for customizing this functionality.

Some concrete functions of A call the abstract functions.

Functionality depends on how abstract functions are overridden.

Application: a concrete class C that is derived from A.

Has to override the abstract functions of A by concrete functions.
Inherits the functionality of A with appropriate customization.

Application frameworks allow the development of “generic applications”.

Wolfgang Schreiner http://www.risc.jku.at 48/51

Application Frameworks

framework

concrete functions

abstract functions overriding functions

inheritance

inherited functions

application

Framework provides “hooks” for customization of application.
Wolfgang Schreiner http://www.risc.jku.at 49/51

Example Framework

class Printer { // an application framework

public:

Printer() { } ;

virtual ~Printer() { };

void print(int n); // functionality of framework

virtual char* getText() = 0; // hook for customization

};

// print n lines containg the denoted text

void Printer::print(int n)

{

for(int i=0; i<n; i++)

{

cout << getText() << "\n";

}

}

A framework for printing text in a formated manner.
Wolfgang Schreiner http://www.risc.jku.at 50/51

Example Application

class IntPrinter: public Printer { // an application

int i;

char text[20];

public:

IntPrinter(int i) { this->i = i; }

virtual char* getText(); // customization of framework

};

char* IntPrinter::getText() {

sprintf(text, "%d", i);

return text;

}

int main() {

IntPrinter p(7);

p.print(3); // 7 7 7

p.print(5); // 7 7 7 7 7

}

An application for printing integers in a formated manner.
Wolfgang Schreiner http://www.risc.jku.at 51/51

	Deriving Classes from Base Classes
	Generic Methods and Types
	Virtual Functions and Overriding
	Abstract Classes, Interfaces, Frameworks

