
Computer Systems (SS 2011)
Exercise 1: April 4, 2011

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

March 7, 2011

The exercise is to be submitted by the denoted deadline via the submission interface
of the Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which
contains the following files:

• A PDF file ExerciseNumber -MatNr.pdf (where Number is the number of the ex-
ercise and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise,
and the author of the solution (identified by name, Matrikelnummer and email
address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that
indentations are appropriately preserved) and an appropriate font size such
that source code lines do not break.

3. A description of all tests performed (copies of program inputs and program
outputs) explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your
solution has unwanted problems or bugs, please document these explicitly
(you will get more credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.

1

Exercise 1: Polygons

Write a program that reads, processes, and draws closed polygons as depicted by the
following picture:

In detail, the program shall consist of the following components with the given public
interfaces (you may freely introduce additional private and public functions):

1. A class Math for comparing floating point numbers:

class Math
{
public:

static void setAccuracy(double a, double r);
static bool equals(double c1, double c2);
static int sign(double c);

};

setAccuracy(a,r) stores in static member variables the absolute/relative accu-
racies a, r for floating point comparisons (choose reasonable defaults, e.g. a = 1
equates pixel-identical point coordinates): c1 and c2 are “equal”, if |c1−c2| < a or if
|(c1−c2)/c2| < r (for the second test, order c1, c2 such that |c1| < |c2|)1. Implement
this equality in equals(c1, c2). The function sign(c) returns 0, if c “equals” 0
and otherwise, ±1, depending on the sign of c. In the rest of the program, only
these functions are allowed for comparing/testing floating point numbers.

1See http://www.cygnus-software.com/papers/comparingfloats/Comparing%20floating%20point%20numbers.htm

2

http://www.cygnus-software.com/papers/comparingfloats/Comparing%20floating%20point%20numbers.htm

2. A class Point that implements points in the plane:

class Point
{
public:

Point(double x = 0, double y = 0);
double getX();
double getY();
void draw(unsigned int color=0, int radius=1);
void draw(Point &p);

};

The constructor Point(x, y) constructs a point with coordinates x, y (default 0).
The selectors getX and getY return the coordinates. The function draw(c,r) draws
a filled circle whose center is the point with color c (default black) and radius r
(default 1).

3. A class Lines that implements the intersection of two lines:

class Lines
{
public:

static Point* intersect(Point& p0, Point& p1, Point&p2, Point &p3,
bool segment = true);

static void drawIntersection(Point& p0, Point &p1, Point& q0, Point& q1,
unsigned int color = 0);

};

The function intersect(p0, p1, p2, p3, s) implements the intersection of two
lines running through points p0, p1 and p2, p3, respectively. The result is a pointer
to the intersection point of the two lines or (if the lines are collinear) the null
pointer. If s is true, the two lines are interpreted as line segments bounded by the
given points; an intersection point is then only returned, if it is within the bounds
of both segments. The logic for this function is:

• If p0 = p1 and p2 = p3, then, if p0 = p2, then return p0, and else the null
pointer.

• If p0 = p1 then, if p0 is on the other line/segment, then return p0, and else
the null pointer.

• If p2 = p3 then, if p2 is on the other line/segment, then return p2, and else
the null pointer.

• If the lines are collinear, return the null pointer.

• Determine the intersection point.

• If s is true, and the point is not on both segments, return the null pointer.

• Return the point.

3

In above algorithm, avoid to use of the division operator, since it is only partially
defined. For instance, rather than testing whether a/b = c/d, you should test
whether a · d = c · b (using the comparison operator of class Math, of course).

The function drawIntersection(p0, p1, p2, p3, s) uses intersect() to com-
pute and draw the intersection point (the point is to be discarded after drawing).

4. A class Polygon that implements closed polygons:

class Polygon
{
public:

Polygon();
~Polygon();
void add(double x, double y);
void random(int n, int x, int y, int w, int h, int seed = 0);
bool read(const char* filename);
void draw(unsigned int color1 = 0, unsigned int color 2 = 0);
void drawIntersection(Polygon& polygon, unsigned int color = 0);

};

The class maintains internally an array that holds the points (objects of type Point)
p0, . . . , pn of the polygon to which new points may be added. If the array becomes
full, a bigger array is allocated and the old array is disposed. The constructor
Polygon() creates a polygon with no points; the destructor ˜Polygon() disposes
the point array. The function add(x,y) adds a point to the polygon (resizing
the array, if necessary). The function random(n, x, y, w, h, s) adds to the
polygon n random points in the coordinate range x . . . x+w respectively y . . . y+h
using the seed value s for the random number generator (use the standard functions
srand() and rand()). The function read(f) reads from a text file with name f
the contents

x1 y1
x2 y2
...
xn yn

that represent the coordinates (floating point numbers) of n points and adds these
to the array. The return value of read() is true, if the file could be successfully
read, and false, if some problem occurred. The function draw(c1, c2) draws the
closed polygon indicating by bullets of color c1 the points of the polygon and by
somewhat smaller bullets of color c2 all other points where the segments of the
polygon self-intersect. The function drawIntersection(p, c) draws those points
in color c where the polygon intersects with another polygon p. Make sure that
your code also works with polygons with less than 3 points.

Test these components by a program that performs (at least) the following tasks:

1. It reads file poly1 and draws the polygon in a window. The outcome must be as
indicated in above picture.

4

2. It reads files poly1 and poly2 and draws the polygons and their common intersec-
tion points in a window.

3. It reads files poly1 and poly3 and draws the polygons and their common intersec-
tion points in a window.

4. It generates two random polygons with self-chosen seed values that represent the
Unicode values of the initial letters of your given name and your family name
and draws the polygons and their intersection points in a window (explicitly give
the seed values that you used and place the polygons such that they have some
intersection points but do not completely overlap). The number of points n1 and
n2 of the polygons you may choose on your own.

Avoid code duplication but make extensive use of auxiliary functions. Write for each
class C a separate header file C.h and an implementation file C.cpp. Use a separate
file Polygons.cpp for your test program. Deliver the source code and screenshots of the
four windows indicated above.

5

