

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at



Wolfgang Schreiner

http://www.risc.jku.at



1/39

#### **Motivation**

We need a language for specifying system properties.

- A system S is a pair  $\langle I, R \rangle$ .
  - Initial states *I*, transition relation *R*.
  - More intuitive: reachability graph.
    - Starting from an initial state  $s_0$ , the system runs evolve.
- Consider the reachability graph as an infinite computation tree.
  - Different tree nodes may denote occurrences of the same state.
    - Each occurrence of a state has a unique predecessor in the tree.
  - Every path in this tree is infinite.
    - Every finite run  $s_0 \rightarrow \ldots \rightarrow s_n$  is extended to an infinite run  $s_0 \to \ldots \to s_n \to s_n \to s_n \to \ldots$
- Or simply consider the graph as a set of system runs.
  - Same state may occur multiple times (in one or in different runs).

Temporal logic describes such trees respectively sets of system runs.



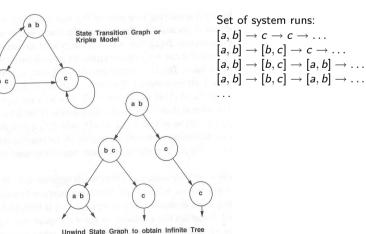
#### 1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

Wolfgang Schreiner http://www.risc.jku.at 2/39

## **Computation Trees versus System Runs**





Computation trees

Set of system runs:

$$[a,b] 
ightarrow c 
ightarrow c 
ightarrow \dots$$
  
 $[a,b] 
ightarrow [b,c] 
ightarrow c 
ightarrow \dots$   
 $[a,b] 
ightarrow [b,c] 
ightarrow [a,b] 
ightarrow \dots$ 

Edmund Clarke et al: "Model Checking", 1999.

#### State Formula



Temporal logic is based on classical logic.

- A state formula F is evaluated on a state s.
  - Any predicate logic formula is a state formula:  $p(x), \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1, \forall x : F, \exists x : F.$
  - In propositional temporal logic only propositional logic formulas are state formulas (no quantification):

$$p, \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1.$$

- Semantics:  $s \models F$  ("F holds in state s").
  - Example: semantics of conjunction.
    - $(s \models F_0 \land F_1) :\Leftrightarrow (s \models F_0) \land (s \models F_1).$
    - " $F_0 \wedge F_1$  holds in s if and only if  $F_0$  holds in s and  $F_1$  holds in s".

Classical logic reasoning on individual states.

Wolfgang Schreiner

http://www.risc.jku.at

5/39

# **Branching Time Logic (CTL)**



We use temporal logic to specify a system property F.

- **Core question**:  $S \models F$  ("F holds in system S").
  - System  $S = \langle I, R \rangle$ , temporal logic formula F.
- Branching time logic:
  - $S \models F$  :  $\Leftrightarrow$   $S, s_0 \models F$ , for every initial state  $s_0$  of S.
  - Property F must be evaluated on every pair of system S and initial state  $s_0$ .
  - Given a computation tree with root  $s_0$ , F is evaluated on that tree.

CTL formulas are evaluated on computation trees.

# **Temporal Logic**



Extension of classical logic to reason about multiple states.

- Temporal logic is an instance of modal logic.
  - Logic of "multiple worlds (situations)" that are in some way related.
  - Relationship may e.g. be a temporal one.
  - Amir Pnueli, 1977: temporal logic is suited to system specifications.
  - Many variants, two fundamental classes.
- Branching Time Logic
  - Semantics defined over computation trees.

At each moment, there are multiple possible futures.

Prominent variant: CTL.

Computation tree logic; a propositional branching time logic.

- Linear Time Logic
  - Semantics defined over sets of system runs.

At each moment, there is only one possible future.

Prominent variant: PLTL.

A propositional linear time logic.

Wolfgang Schreiner http://www.risc.jku.at 6/39

#### **State Formulas**



We have additional state formulas.

- $\blacksquare$  A state formulas F is evaluated on state s of System S.
  - Every (classical) state formula f is such a state formula.
  - Let P denote a path formula (later).
    - Evaluated on a path (state sequence)  $p = p_0 \rightarrow p_1 \rightarrow p_2 \rightarrow \dots$  $R(p_i, p_{i+1})$  for every i;  $p_0$  need not be an initial state.
  - Then the following are state formulas:

**A** P ("in every path P"), **E** P ("in some path P").

- Path quantifiers: **A**, **E**.
- Semantics:  $S, s \models F$  ("F holds in state s of system S").

 $S, s \models f :\Leftrightarrow s \models f$ .

 $S, s \models A P :\Leftrightarrow S, p \models P$ , for every path p of S with  $p_0 = s$ .

 $S, s \models \mathbf{E} P :\Leftrightarrow S, p \models P$ , for some path p of S with  $p_0 = s$ .

#### **Path Formulas**



We have a class of formulas that are not evaluated over individual states.

- $\blacksquare$  A path formula P is evaluated on a path p of system S.
  - Let *F* and *G* denote state formulas.
  - Then the following are path formulas:

X F ("next time F"),

**G** F ("always F"),

**F** F ("eventually F"),

F **U** G ("F until G").

■ Temporal operators: X, G, F, U.

■ Semantics:  $S, p \models P$  ("P holds in path p of system S").

 $S, p \models \mathbf{X} F :\Leftrightarrow S, p_1 \models F.$ 

 $S, p \models \mathbf{G} F :\Leftrightarrow \forall i \in \mathbb{N} : S, p_i \models F.$ 

 $S, p \models \mathbf{F} F : \Leftrightarrow \exists i \in \mathbb{N} : S, p_i \models F.$ 

 $S, p \models F \cup G : \Leftrightarrow \exists i \in \mathbb{N} : S, p_i \models G \land \forall j \in \mathbb{N}_i : S, p_j \models F.$ 

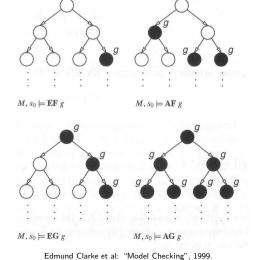
Wolfgang Schreiner

http://www.risc.jku.at

9/39

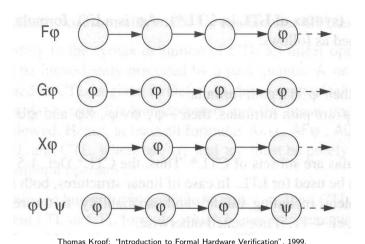
# **Path Quantifiers and Temporal Operators**





#### **Path Formulas**





Thomas Kropi: Introduction to Formal Hardware Verification , 1999.

Wolfgang Schreiner http://www.risc.jku.at 10/39

# Linear Time Logic (LTL)



We use temporal logic to specify a system property P.

- Core question:  $S \models P$  ("P holds in system S").
  - System  $S = \langle I, R \rangle$ , temporal logic formula P.
- Linear time logic:
  - $S \models P$  :⇔  $r \models P$ , for every run r of S.
  - Property P must be evaluated on every run r of S.
  - Given a computation tree with root  $s_0$ , P is evaluated on every path of that tree originating in  $s_0$ .
    - If P holds for every path, P holds on S.

LTL formulas are evaluated on system runs.

Wolfgang Schreiner http://www.risc.jku.at 11/39 Wolfgang Schreiner http://www.risc.jku.at 12/39

#### **Formulas**



No path quantifiers; all formulas are path formulas.

- Every formula is evaluated on a path p.
  - Also every state formula f of classical logic (see below).
  - Let *F* and *G* denote formulas.
  - Then also the following are formulas:

**X** F ("next time F"), often written  $\bigcirc F$ ,

**G** F ("always F"), often written  $\Box F$ ,

**F** F ("eventually F"), often written  $\Diamond F$ ,

F **U** G ("F until G").

- Semantics:  $p \models P$  ("P holds in path p").
  - $p^i := \langle p_i, p_{i+1}, \ldots \rangle.$

 $p \models f : \Leftrightarrow p_0 \models f$ .

 $p \models X F :\Leftrightarrow p^1 \models F$ .

 $p \models \mathbf{G} \ F : \Leftrightarrow \forall i \in \mathbb{N} : p^i \models F.$ 

 $p \models \mathbf{F} F : \Leftrightarrow \exists i \in \mathbb{N} : p^i \models F.$ 

 $p \models F \cup G : \Leftrightarrow \exists i \in \mathbb{N} : p^i \models G \land \forall j \in \mathbb{N}_i : p^j \models F.$ 

Wolfgang Schreiner

http://www.risc.jku.at

13/39

## **Branching versus Linear Time Logic**



We use temporal logic to specify a system property P.

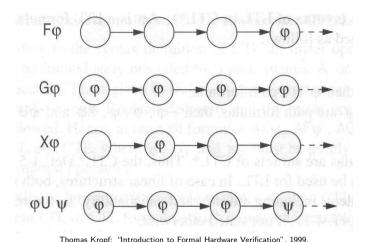
- **Core question**:  $S \models P$  ("P holds in system S").
  - System  $S = \langle I, R \rangle$ , temporal logic formula P.
- Branching time logic:
  - $S \models P$  :  $\Leftrightarrow$   $S, s_0 \models P$ , for every initial state  $s_0$  of S.
  - Property P must be evaluated on every pair  $(S, s_0)$  of system S and initial state  $s_0$ .
  - Given a computation tree with root  $s_0$ , P is evaluated on that tree.
- Linear time logic:

Wolfgang Schreiner

- $S \models P$  :⇔  $r \models P$ , for every run r of s.
- Property P must be evaluated on every run r of S.
- Given a computation tree with root  $s_0$ , P is evaluated on every path of that tree originating in  $s_0$ .
  - If P holds for every path, P holds on S.

#### **Formulas**





Wolfgang Schreiner

http://www.risc.jku.at

# **Branching versus Linear Time Logic**



14/39

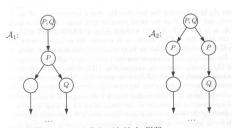


Fig. 2.4. Two automata, indistinguishable for PLTL

B. Berard et al: "Systems and Software Verification", 2001

- Linear time logic: both systems have the same runs.
  - Thus every formula has same truth value in both systems.
- Branching time logic: the systems have different computation trees.
  - Take formula  $AX(EX Q \land EX \neg Q)$ .
  - True for left system, false for right system.

The two variants of temporal logic have different expressive power.

http://www.risc.jku.at 15/39 Wolfgang Schreiner http://www.risc.jku.at 16/39

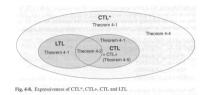
#### **Branching versus Linear Time Logic**



Is one temporal logic variant more expressive than the other one?

- CTL formula: AG(EF F).
  - In every run, it is at any time still possible that later F will hold".
  - Property cannot be expressed by any LTL logic formula.
- LTL formula:  $\Diamond \Box F$  (i.e. **FG** F).
  - In every run, there is a moment from which on F holds forever.".
  - Naive translation **AFG** F is **not** a CTL formula.
    - **G** F is a path formula, but **F** expects a state formula!
  - Translation **AFAG** F expresses a stronger property (see next page).
  - Property cannot be expressed by any CTL formula.

None of the two variants is strictly more expressive than the other one; no variant can express every system property.



: Thomas Kropf: "Introduction to Formal Hardware Verification", 1999. http://www.risc.jku.at

Wolfgang Schreiner

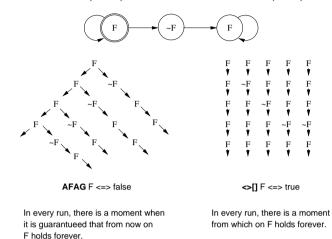


- 1. The Basics of Temporal Logic
- 2. Specifying with Linear Time Logic

## **Branching versus Linear Time Logic**



Proof that **AFAG** F (CTL) is different from  $\Diamond \Box F$  (LTL).



Wolfgang Schreiner http://www.risc.jku.at 18/39

# **Linear Time Logic**



Why using linear time logic (LTL) for system specifications?

- LTL has many advantages:
  - LTL formulas are easier to understand.
    - Reasoning about computation paths, not computation trees.
    - No explicit path quantifiers used.
  - LTL can express most interesting system properties.
    - Invariance, guarantee, response, ... (see later).
  - LTL can express fairness constraints (see later).
    - CTL cannot do this.
    - But CTL can express that a state is reachable (which LTL cannot).
- LTL has also some disadvantages:
  - LTL is strictly less expressive than other specification languages.
    - $\blacksquare$  CTL\* or  $\mu$ -calculus.
  - Asymptotic complexity of model checking is higher.
    - LTL: exponential in size of formula; CTL: linear in size of formula.
    - In practice the number of states dominates the checking time.

Wolfgang Schreiner http://www.risc.jku.at 19/39 Wolfgang Schreiner http://www.risc.jku.at 20/39

#### Frequently Used LTL Patterns



In practice, most temporal formulas are instances of particular patterns.

| Pattern                                 | Pronounced                       | Name       |
|-----------------------------------------|----------------------------------|------------|
| $\Box F$                                | always <i>F</i>                  | invariance |
| $\Diamond F$                            | eventually $F$                   | guarantee  |
| $\Box \Diamond F$                       | F holds infinitely often         | recurrence |
| $\Diamond\Box F$                        | eventually $F$ holds permanently | stability  |
| $\Box(F\Rightarrow \Diamond G)$         | always, if $F$ holds, then       | response   |
|                                         | eventually $G$ holds             |            |
| $\Box(F\Rightarrow (G\ \mathbf{U}\ H))$ | always, if $F$ holds, then       | precedence |
|                                         | G holds until H holds            |            |

Typically, there are at most two levels of nesting of temporal operators.

Wolfgang Schreiner

http://www.risc.jku.at

21/39

## **Temporal Rules**



Temporal operators obey a number of fairly intuitive rules.

- Extraction laws:
  - $\Box F \Leftrightarrow F \land \bigcirc \Box F.$
  - $\diamond F \Leftrightarrow F \lor \Diamond \diamond F$ .
  - $\blacksquare$  F  $\bigcup$  G  $\Leftrightarrow$   $G \lor (F \land \bigcirc (F \bigcup G)).$
- Negation laws:
  - $\neg \Box F \Leftrightarrow \Diamond \neg F$ .
  - $\neg \Diamond F \Leftrightarrow \Box \neg F$ .
  - $\neg (F \cup G) \Leftrightarrow (\neg G) \cup (\neg F \land \neg G).$
- Distributivity laws:
  - $\Box$   $(F \land G) \Leftrightarrow (\Box F) \land (\Box G).$
  - $\diamond (F \vee G) \Leftrightarrow (\diamond F) \vee (\diamond G).$
  - $\blacksquare$   $(F \land G) \cup H \Leftrightarrow (F \cup H) \land (G \cup H).$
  - $F \mathbf{U} (G \vee H) \Leftrightarrow (F \mathbf{U} G) \vee (F \mathbf{U} H).$
  - $\Box \Diamond (F \vee G) \Leftrightarrow (\Box \Diamond F) \vee (\Box \Diamond G).$

#### **Examples**



- Mutual exclusion:  $\Box \neg (pc_1 = C \land pc_2 = C)$ .
  - Alternatively:  $\neg \diamondsuit (pc_1 = C \land pc_2 = C)$ .
  - Never both components are simultaneously in the critical region.
- No starvation:  $\forall i$ :  $\Box(pc_i = W \Rightarrow \Diamond pc_i = R)$ .
  - Always, if component *i* waits for a response, it eventually receives it.
- No deadlock:  $\Box \neg \forall i : pc_i = W$ .
  - $\blacksquare$  Never all components are simultaneously in a wait state W.
- Precedence:  $\forall i : \Box (pc_i \neq C \Rightarrow (pc_i \neq C \cup lock = i))$ .
  - Always, if component *i* is out of the critical region, it stays out until it receives the shared lock variable (which it eventually does).
- Partial correctness:  $\Box(pc = L \Rightarrow C)$ .
  - Always if the program reaches line *L*, the condition *C* holds.
- Termination:  $\forall i : \Diamond (pc_i = T)$ .
  - Every component eventually terminates.

Wolfgang Schreiner http://www.risc.jku.at 22/39

# **Classes of System Properties**



There exists two important classes of system properties.

- Safety Properties:
  - A safety property is a property such that, if it is violated by a run, it is already violated by some finite prefix of the run.
    - This finite prefix cannot be extended in any way to a complete run satisfying the property.
  - Example:  $\Box F$ .
    - The violating run  $F \to F \to \neg F \to \dots$  has the prefix  $F \to F \to \neg F$  that cannot be extended in any way to a run satisfying  $\Box F$ .
- Liveness Properties:
  - A liveness property is a property such that every finite prefix can be extended to a complete run satisfying this property.
    - Only a complete run itself can violate that property.
  - **Example:**  $\Diamond F$ .
    - Any finite prefix p can be extended to a run  $p \rightarrow F \rightarrow \dots$  which satisfies  $\diamond F$ .

#### **System Properties**



Not every system property is itself a safety property or a liveness property.

- Example:  $P :\Leftrightarrow (\Box A) \land (\Diamond B)$ 
  - Conjunction of a safety property and a liveness property.
- Take the run  $[A, \neg B] \rightarrow [A, \neg B] \rightarrow [A, \neg B] \rightarrow \dots$  violating P.
  - Any prefix  $[A, \neg B] \rightarrow \ldots \rightarrow [A, \neg B]$  of this run can be extended to a run  $[A, \neg B] \rightarrow \ldots \rightarrow [A, \neg B] \rightarrow [A, B] \rightarrow [A, B] \rightarrow \ldots$  satisfying P.
  - Thus *P* is not a safety property.
- Take the finite prefix  $[\neg A, B]$ .
  - This prefix cannot be extended in any way to a run satisfying *P*.
  - Thus *P* is not a liveness property.

So is the distinction "safety" versus "liveness" really useful?.

Wolfgang Schreiner

http://www.risc.jku.at

25/39

# **Proving Invariance**



We only consider a special case of a safety property.

- Prove  $M \models \Box F$ .
  - $\blacksquare$  F is a state formula (a formula without temporal operator).
  - Prove that F is an invariant of system M.
- $M = \langle I, R \rangle.$ 
  - $I(s):\Leftrightarrow \dots$
  - $R(s,s') : \Leftrightarrow R_0(s,s') \vee R_1(s,s') \vee \ldots \vee R_{n-1}(s,s').$
- Induction Proof.
  - $\forall s: I(s) \Rightarrow F(s).$ 
    - Proof that F holds in every initial state.
  - $\forall s, s' : F(s) \land R(s, s') \Rightarrow F(s').$ 
    - Proof that each transition preserves F.
    - Reduces to a number of subproofs:

$$F(s) \wedge R_0(s,s') \Rightarrow F(s')$$

$$F(s) \wedge R_{n-1}(s,s') \Rightarrow F(s')$$

#### **System Properties**



The real importance of the distinction is stated by the following theorem.

#### Theorem:

Every system property P is a conjunction  $S \wedge L$  of some safety property S and some liveness property L.

- If *L* is "true", then *P* itself is a safety property.
- If S is "true", then P itself is a liveness property.

#### Consequence:

- Assume we can decompose P into appropriate S and L.
- For proving  $M \models P$ , it then suffices to perform two proofs:
  - A safety proof:  $M \models S$ .
  - A liveness proof:  $M \models L$ .
- Different strategies for proving safety and liveness properties.

For verification, it is important to decompose a system property in its "safety part" and its "liveness part".

Wolfgang Schreiner http://www.risc.jku.at 26/39

## **Example**



```
egin{aligned} \mathbf{var} & x := 0 \ \mathbf{loop} \ & p_0 : \mathbf{wait} & x = 0 \ & p_1 : x := x + 1 \end{aligned} \qquad egin{aligned} & \mathbf{loop} \ & q_0 : \mathbf{wait} & x = 1 \ & q_1 : x := x - 1 \end{aligned}
```

$$State = \{p_0, p_1\} \times \{q_0, q_1\} \times \mathbb{Z}.$$

$$I(p,q,x) :\Leftrightarrow p = p_0 \land q = q_0 \land x = 0.$$
  
 
$$R(\langle p,q,x\rangle, \langle p',q',x'\rangle) :\Leftrightarrow P_0(\ldots) \lor P_1(\ldots) \lor Q_0(\ldots) \lor Q_1(\ldots).$$

$$P_0(\langle p,q,x\rangle,\langle p',q',x'\rangle):\Leftrightarrow p=p_0 \land x=0 \land p'=p_1 \land q'=q \land x'=x.$$

$$P_1(\langle p,q,x\rangle,\langle p',q',x'\rangle):\Leftrightarrow p=p_1 \land p'=p_0 \land q'=q \land x'=x+1.$$

$$Q_0(\langle p,q,x\rangle,\langle p',q',x'\rangle):\Leftrightarrow q=q_0 \land x=1 \land p'=p \land q'=q_1 \land x'=x.$$

$$Q_1(\langle p,q,x\rangle,\langle p',q',x'\rangle):\Leftrightarrow q=q_1 \land p'=p \land q'=q_0 \land x'=x-1.$$

Prove 
$$\langle I, R \rangle \models \Box (x = 0 \lor x = 1)$$
.

## **Inductive System Properties**



The induction strategy may not work for proving  $\Box F$ 

- Problem: *F* is not inductive.
  - F is too weak to prove the induction step.
    - $F(s) \wedge R(s,s') \Rightarrow F(s').$
- Solution: find stronger invariant *I*.
  - If  $I \Rightarrow F$ , then  $(\Box I) \Rightarrow (\Box F)$ .
  - It thus suffices to prove  $\Box I$ .
- Rationale: I may be inductive.
  - If yes, *I* is strong enough to prove the induction step.
    - $I(s) \wedge R(s,s') \Rightarrow I(s').$
  - If not, find a stronger invariant I' and try again.
- Invariant / represents additional knowledge for every proof.
  - Rather than proving  $\Box P$ , prove  $\Box (I \Rightarrow P)$ .

The behavior of a system is captured by its strongest invariant.

Wolfgang Schreiner

http://www.risc.jku.at

29/39

## **Proving Liveness**



$$\begin{array}{lll} \mathbf{var} \; x := 0, y := 0 \\ \mathbf{loop} & || & \mathbf{loop} \\ x := x + 1 & y := y + 1 \end{array}$$

State = 
$$\mathbb{N} \times \mathbb{N}$$
; Label =  $\{p, q\}$ .  
 $I(x, y) :\Leftrightarrow x = 0 \land y = 0$ .  
 $R(I, \langle x, y \rangle, \langle x', y' \rangle) :\Leftrightarrow$   
 $(I = p \land x' = x + 1 \land y' = y) \lor (I = q \land x' = x \land y' = y + 1)$ .

- Prove  $\langle I, R \rangle \models \Diamond x = 1$ .
  - $[x = 0, y = 0] \rightarrow [x = 0, y = 1] \rightarrow [x = 0, y = 2] \rightarrow \dots$
  - This run violates (as the only one)  $\Diamond x = 1$ .
  - Thus the system as a whole does not satisfy  $\Diamond x = 1$ .

For proving liveness properties, "unfair" runs have to be ruled out.

#### **Example**



- Prove  $\langle I, R \rangle \models \Box (x = 0 \lor x = 1)$ .
  - Proof attempt fails.
- Prove  $\langle I, R \rangle \models \Box G$ .

$$G:\Leftrightarrow (x = 0 \lor x = 1) \land (p = p_1 \Rightarrow x = 0) \land (q = q_1 \Rightarrow x = 1).$$

- Proof works.
- $G \Rightarrow (x = 0 \lor x = 1)$  obvious.

See the proof presented in class.

Wolfgang Schreiner

http://www.risc.jku.at

#### 30/39

# **Enabling Condition**



When is a particular transition enabled for execution?

- Enabled<sub>R</sub>(I, s) : $\Leftrightarrow \exists t : R(I, s, t)$ .
  - Labeled transition relation *R*, label *I*, state *s*.
  - Read: "Transition (with label) / is enabled in state s (w.r.t. R)".
- Example (previous slide):

```
Enabled<sub>R</sub>(p, \langle x, y \rangle)
\Leftrightarrow \exists x', y' : R(p, \langle x, y \rangle, \langle x', y' \rangle)
\Leftrightarrow \exists x', y' : (p = p \land x' = x + 1 \land y' = y) \lor (p = q \land x' = x \land y' = y + 1)
\Leftrightarrow (\exists x', y' : p = p \land x' = x + 1 \land y' = y) \lor (\exists x', y' : p = q \land x' = x \land y' = y + 1)
\Leftrightarrow \text{true} \lor \text{false}
\Leftrightarrow \text{true}.
```

Transition p is always enabled.

#### **Weak Fairness**



- Weak Fairness
  - A run  $s_0 \xrightarrow{l_0} s_1 \xrightarrow{l_1} s_2 \xrightarrow{l_2} \dots$  is weakly fair to a transition l, if
    - if transition *I* is eventually permanently enabled in the run,
    - then transition I is executed infinitely often in the run.

$$(\exists i : \forall j \geq i : Enabled_R(I, s_i)) \Rightarrow (\forall i : \exists j \geq i : I_i = I).$$

- The run in the previous example was not weakly fair to transition p.
- LTL formulas may explicitly specify weak fairness constraints.
  - Let  $E_l$  denote the enabling condition of transition l.
  - Let  $X_I$  denote the predicate "transition I is executed".
  - Define  $WF_I :\Leftrightarrow (\Diamond \Box E_I) \Rightarrow (\Box \Diamond X_I)$ .

If I is eventually enabled forever, it is executed infinitely often.

Prove  $\langle I, S \rangle \models (WF_I \Rightarrow P)$ .

Property P is only proved for runs that are weakly fair to I.

Alternatively, a model may also have weak fairness "built in".

Wolfgang Schreiner http://www.risc.jku.at 33/39

# **Proving a Guarantee**



- Core proof:  $\langle I, R \rangle \models \Diamond F$ .
  - Find lucky transition I with enabling condition  $E_I$ .
    - The execution of *I* makes *F* true.
    - As long as F is not true, I is enabled.
    - By weak fairness, either F becomes true or I is eventually executed.
    - $lue{}$  Until I is executed, additional property H holds.

$$\neg F(s) \land I(s) \Rightarrow H(s) \land E_{I}(s).$$

$$\neg F(s) \land H(s) \land E_{I}(s) \land \neg R(I, s, s') \Rightarrow H(s') \land E_{I}(s').$$

$$\neg F(s) \land H(s) \land R(I, s, s') \Rightarrow F(s').$$

- Core proofs:  $\langle I, R \rangle \models \Box (G \Rightarrow \Diamond F)$ .
  - Find lucky transition I with enabling condition  $E_I$ .
    - Prove:  $\neg F(s) \land G(s) \Rightarrow H(s) \land E_l(s)$ .
    - Prove:  $\neg F(s) \land H(s) \land E_l(s) \land \neg R(l, s, s') \Rightarrow H(s') \land E_l(s')$ .
    - Prove:  $\neg G(s) \land H(s) \land R(l, s, s') \Rightarrow F(s')$ .

Sometimes augmented by proofs using well-founded orderings.

#### **Proving a Guarantee**



We only consider a special case of a liveness property.

- Prove  $\langle I, R \rangle \models \Diamond F$ .
  - Proof that *F* is a guarantee of the system.
  - F is a state formula (a formula without a temporal operator).
- **Decomposition:** sequence of properties  $F_0, F_1, \ldots, F_n = F$ .
  - Prove  $\langle I, R \rangle \models \Diamond F_0$ .
  - Prove  $\langle I, R \rangle \models \Box (F_0 \Rightarrow \Diamond F_1)$ .
  - Prove  $\langle I, R \rangle \models \Box (F_1 \Rightarrow \Diamond F_2)$ .
  - . . .
  - Prove  $\langle I, R \rangle \models \Box(F_{n-1} \Rightarrow \Diamond F)$ .

Typically, guarantee proofs have to be decomposed into multiple proofs.

Wolfgang Schreiner

http://www.risc.jku.at

34/39

## **Example**



```
State = \mathbb{N} \times \mathbb{N}; Label = \{p, q\}.
I(x, y) :\Leftrightarrow x = 0 \land y = 0.
R(I, \langle x, y \rangle, \langle x', y' \rangle) :\Leftrightarrow
(I = p \land x' = x + 1 \land y' = y) \lor (I = q \land x' = x \land y' = y + 1).
```

- Prove  $\langle I, R \rangle \models \Diamond x = 1$ .
  - Lucky transition p, additional property  $H : \Leftrightarrow x = 0$ .

$$x \neq 1 \land (x = 0 \land y = 0) \Rightarrow x = 0 \land \text{true}.$$
  
 $x \neq 1 \land x = 0 \land \text{true} \land (x' = x \land y' = y + 1) \Rightarrow x' = 0 \land \text{true}.$   
 $x \neq 1 \land x = 0 \land (x' = x + 1 \land y' = y) \Rightarrow x' = 1.$ 

#### **Strong Fairness**



- Strong Fairness
  - A run  $s_0 \xrightarrow{l_0} s_1 \xrightarrow{l_1} s_2 \xrightarrow{l_2} \dots$  is strongly fair to a transition l, if
    - if *I* is infinitely often enabled in the run,
    - then *I* is also infinitely often executed the run.

$$(\forall i : \exists j \geq i : Enabled_R(I, s_i)) \Rightarrow (\forall i : \exists j \geq i : I_i = I).$$

- If r is strongly fair to I, it is also weakly fair to I (but not vice versa).
- LTL formulas may explicitly specify strong fairness constraints.
  - Let  $E_l$  denote the enabling condition of transition l.
  - Let  $X_I$  denote the predicate "transition I is executed".
  - Define  $SF_I :\Leftrightarrow (\Box \Diamond E_I) \Rightarrow (\Box \Diamond X_I)$ .

If I is enabled infinitely often, it is executed infinitely often.

Prove  $\langle I, S \rangle \models (SF_I \Rightarrow P)$ .

Property P is only proved for runs that are strongly fair to I.

A much stronger requirement to the fairness of a system.

Wolfgang Schreiner http://www.risc.jku.at 37/39

# Weak versus Strong Fairness



In which situations is which notion of fairness appropriate?

- Process just waits to be scheduled for execution.
  - Only CPU time is required.
  - Weak fairness suffices.
- Process waits for resource that may be temporarily blocked.
  - Critical region protected by lock variable (mutex/semaphore).
  - Strong fairness is required.
- Non-deterministic choices are repeatedly made in program.
  - Simultaneous listing on multiple communication channels.
  - Strong fairness is required.

Many other notions or fairness exist.

Wolfgang Schreiner http://www.risc.jku.at 39/39

#### **Example**



Wolfgang Schreiner http://www.risc.jku.at 38/39

Run is weakly fair but not strongly fair to  $B_1$ .