
Formal Methods in Software Development
Exercise 7 (December 20)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

December 1, 2010

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,
• the deliverables requested in the description of the exercise,

2. the JML-annotated Java files developed in the exercise,

3. the proof files generated by the KeY prover (use the menu option “Save”).

1



Exercise 7: JML Specifications & Verifications

Formalize the specifications of the methods insert and sort in the attached class Exercise7
in the JML heavy-weight format by a precondition (requires), frame condition (assignable),
and postcondition (ensures). Also give the loops appropriate invariants (loop_invariant)
and termination terms (decreases). Furthermore, give the class a function main that allows
you to test the code by some calls of method sort. For the purpose of this exercise, in the
specification of sort it suffices to say that the result array is sorted; you need not state that the
result array is a permutation of the original array.

First use jml to type-check the specification. Then use the JML runtime assertion compiler
jmlc and assertion checker jmlrac to validate the specification by at least five calls of method
sort including a null array, an array of length zero, an array of length one, an array of length
two, and a longer array. Then use the extended static checker escjava2 to further validate your
specification (which may or may not give warnings which you may or may not ignore).

If you are confident with your specifications, provide the loops also with assignable clauses
(which are not standard but needed by KeY). Then verify the methods with the KeY prover (ver-
ification condition EnsuresPost, i.e. the postcondition of the method body and the termination
of the method). If your specifications are correct, the proofs should run through with less than
ten iterations of “Run” and “Simplify”1. If you cannot complete the proofs, investigate the proof
tree to find out what went wrong and reconsider your specifications/invariants/termination terms.

The deliverables of this exercise consist

• a nicely formatted copy of the JML-annotated Java code used for the following checks,

• the output of running jml -Q on the class,

• the output of running jmlrac on the class,

• the output of running escjava2 on the class,

• a nicely formatted copy of the JML-annotated Java code used for running the KeY prover,

• for each proof, a screenshot of the KeY prover when the proof has been completed (re-
spectively with an open state if you could not complete the proof),

• for each proof, an explicit statement where you say whether you could complete the KeY
proof or not (and how many states have remained open) and optionally any explanations
or comments you would like to make.

Bonus (10 points): State in an extended version of the specification (separate from the original
one) that the sorted array is a permutation of the original one, i.e. that there is an index permuta-
tion that maps all indices of the old array to indices with the same values in the new array; also
adapt the loop-invariant correspondingly. An index permutation is an integer array of length n
where each of the indices 0 . . . n − 1 occurs exactly once. Attempt a KeY proof for this specifi-
cation, show by a screenshot how far the proof attempt went (it will not succeed automatically),
and based on an investigation of the proof tree explain why you think the prover failed.

1This is true for the version KeY 1.4.0 used in class. The recently published version KeY 1.6.0 is not able to prove
the verification conditions without interactive help; please do not use that version.

2


