Klausur 2

Berechenbarkeit und Komplexität

21. Januar 2011

Markieren Sie die jeweils richtige Antwort. Jede richtige Antwort ergibt einen Punkt. - Viel Erfolg!

Aufgabe 1 RecFun2010
Gegeben seien die Prädikate

$$P(t,x) \equiv t = x^2,$$

 $Q(t,x) \equiv t^2 = x.$

Die Funktionen $f_P : \mathbb{N} \to \mathbb{N}$ und $f_Q : \mathbb{N} \to \mathbb{N}$ über den natürlichen Zahlen seien folgendermaßen definiert:

$$f_P(x) := \min_t P(t, x),$$

$$f_Q(x) := \min_t Q(t, x).$$

1 ja

Ist f_P primitiv rekursiv?

$$f_P(x) = x^2$$
.

2 nein

Ist f_Q primitive rekursiv?

Es gibt keine natürliche Zahl t, so dass $t^2 = 2$. Folglich ist $f_Q(2)$ nicht definiert. Jede primitiv rekursive Funktion ist aber total.

3 ja

Ist f_Q Turing-berechenbar?

 f_Q ist rekursiv und damit Turing-berechenbar.

Aufgabe 2 Complexity2010

Seien $f_1(n) = 2^{100}n$, $f_2(n) = \log(2^{100n})$, $f_3(n) = 2^{100n}$, $f_4(n) = \sqrt{(2^{100}n)}$, $f_5(n) = n \log(n \log n)$.

Die Sprechweise "f ist von der Ordnung g" ist gleichbedeutend mit f = O(g). Und "f und g sind von gleicher Ordnung" bedeutet, dass sowohl f = O(g) als auch g = O(f) gelten.

4	ja	
5		nein
6	ja	
7		nein
8	ja	
9		nein

Sind f_1 und f_2 von gleicher Ordnung?

Sind $2^{f_1(n)}$ und $2^{f_2(n)}$ von gleicher Ordnung?

Ist f_2 von der Ordnung f_3 ?

Ist f_1 von der Ordnung f_4 ?

Ist f_1 von der Ordnung f_5 ?

Ist n^2 von der Ordnung $n \log(n)$?

Aufgabe 3 $\boxed{\textit{Decidable2010}}$

Im Folgenden sind alle Turingmaschinen über dem Alphabet $\{0,1\}$ zu verstehen. Betrachten Sie die folgenden Probleme.

Problem P_1 : Enthält die akzeptierte Wortmenge L(M) einer Turingmaschine M ein Wort der Länge 1?

Problem P_2 : Generiert eine Turingmaschine M das Wort 0 in höchstens 10^{1000} Schritten?

Problem P_3 : Ist die akzeptierte Sprache L(M) einer Turingmaschine M endlich?

Problem P_4 : Gilt $L(M) = \{0,1\}^*$ für eine Turingmaschine M?

Problem P_5 : Gilt $L(M) \subseteq \{0,1\}^*$ für eine Turingmaschine M?

10 nein Ist P_1 entscheidbar? Satz von Rice (S. 67, Satz 4.2.1) Ist P_2 entscheidbar? 11 ja Turingmaschine M 10¹⁰⁰⁰ Schritte laufen lassen und nachschauen, ob 0 generiert wurde. 12 nein Ist P₃ entscheidbar? $\{L \subseteq \{0,1\}^* \mid L \ r.a. \land L \ endlich \} \ ist \ nichttriviale \ Eigenschaft$ von r.a. Sprachen, somit unentscheidbar. Das bedeutet, $\{\,\langle M \rangle \,|\, L(M) \,\, endlich\,\,\}$ ist nicht rekursiv. Das ist genau die Instanzenmenge von Problem P_3 . Ist P_4 entscheidbar? 13nein 14 Ist P_5 entscheidbar? ja Für jede TM M gilt $L(M) \subseteq \{0,1\}^*$. 15 Ist P_6 entscheidbar? ja Dieses Entscheidungsproblem hat keine Parameter. Es gibt keine $nat \ddot{u}rliche\ Zahl\ x,\ so\ dass\ x+1=0.$ Folglich ist die Menge L_{P_6} die leere Menge. Diese Menge ist natürlich rekursiv und somit ist P_6 entscheidbar. Aufgabe 4 | Chomsky2010

Sei G_F eine kontextfreie und G_S eine kontextsensitive Grammatik. Wir nehmen an, dass G_F keine Ersetzungsregel der Form $\alpha \to \beta$ enthält, bei der β das leere Wort ist. Weiterhin sei $L_F = L(G_F)$ und $L_S = L(G_S)$.

16		nein	$Ist \; L_F \; notwendigerweise \; regulär?$
17	ja		${\it Ist} L_S notwendigerweise rekursiv aufz\"{a}hlbar?$

18 | ja

19

20

ja

nein

Ist $L_S \cup L_F$ notwendigerweise rekursiv?

 G_F kann nicht nur als kontextfreie, sondern auch als kontextsensitive Grammatik aufgefasst werden. (Deswegen die Einschränkung, dass das leere Wort auf der rechten Seite einer Ersetzungsregel nicht auftritt.) Jede kontextsensitive Sprache ist rekursiv. Rekursive Sprachen sind abgeschlossen bzgl. Vereinigung.

Gibt es zu jedem deterministischen endlichen Automaten D eine kontextfreie Grammatik G, so dass L(D) = L(G)? Ist L_F notwendigerweise endlich?

> $\{1^n \mid n \in \mathbb{N}\}\$ ist eine unendliche reguläre Sprache. Jede reguläre Sprache ist kontextfrei.